Several versions of the compensated compactness principle
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1387-1412
Voir la notice de l'article provenant de la source Math-Net.Ru
The convergence of the product of a solenoidal vector $w_\varepsilon$ and a gradient $\nabla u_\varepsilon$
in $L^1(\Omega)$ (where $\Omega$ is a region in $\mathbb R^d$) is investigated in the case when the factors converge weakly in the spaces $L^\gamma(\Omega)^d$ and $L^\alpha(\Omega)^d$,
respectively, with $1/\gamma+1/\alpha>1$, which means that the main assumption of the classical $div$-$curl$ lemma fails. Nevertheless, the same convergence (in the sense of distributions in $\Omega$)
$$
\lim_{\varepsilon\to0}w_\varepsilon\cdot\nabla u_\varepsilon
=\lim_{\varepsilon\to0}w_\varepsilon\cdot\lim_{\varepsilon\to0}
\nabla u_\varepsilon=w\cdot\nabla u
$$
as in the framework of the $div$-$curl$ lemma, survives under certain additional assumptions.
The new versions of the compensated compactness principle proved in the paper can be used in
homogenization and in the theory of $G$-convergence of monotone operators with non-standard coercivity and growth properties, for instance, some degenerate operators.
Bibliography: 20 titles.
@article{SM_2011_202_9_a6,
author = {S. E. Pastukhova and A. S. Khripunova},
title = {Several versions of the compensated compactness principle},
journal = {Sbornik. Mathematics},
pages = {1387--1412},
publisher = {mathdoc},
volume = {202},
number = {9},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a6/}
}
S. E. Pastukhova; A. S. Khripunova. Several versions of the compensated compactness principle. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1387-1412. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a6/