Several versions of the compensated compactness principle
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1387-1412

Voir la notice de l'article provenant de la source Math-Net.Ru

The convergence of the product of a solenoidal vector $w_\varepsilon$ and a gradient $\nabla u_\varepsilon$ in $L^1(\Omega)$ (where $\Omega$ is a region in $\mathbb R^d$) is investigated in the case when the factors converge weakly in the spaces $L^\gamma(\Omega)^d$ and $L^\alpha(\Omega)^d$, respectively, with $1/\gamma+1/\alpha>1$, which means that the main assumption of the classical $div$-$curl$ lemma fails. Nevertheless, the same convergence (in the sense of distributions in $\Omega$) $$ \lim_{\varepsilon\to0}w_\varepsilon\cdot\nabla u_\varepsilon =\lim_{\varepsilon\to0}w_\varepsilon\cdot\lim_{\varepsilon\to0} \nabla u_\varepsilon=w\cdot\nabla u $$ as in the framework of the $div$-$curl$ lemma, survives under certain additional assumptions. The new versions of the compensated compactness principle proved in the paper can be used in homogenization and in the theory of $G$-convergence of monotone operators with non-standard coercivity and growth properties, for instance, some degenerate operators. Bibliography: 20 titles.
@article{SM_2011_202_9_a6,
     author = {S. E. Pastukhova and A. S. Khripunova},
     title = {Several versions of the compensated compactness principle},
     journal = {Sbornik. Mathematics},
     pages = {1387--1412},
     publisher = {mathdoc},
     volume = {202},
     number = {9},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a6/}
}
TY  - JOUR
AU  - S. E. Pastukhova
AU  - A. S. Khripunova
TI  - Several versions of the compensated compactness principle
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1387
EP  - 1412
VL  - 202
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_9_a6/
LA  - en
ID  - SM_2011_202_9_a6
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%A A. S. Khripunova
%T Several versions of the compensated compactness principle
%J Sbornik. Mathematics
%D 2011
%P 1387-1412
%V 202
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_9_a6/
%G en
%F SM_2011_202_9_a6
S. E. Pastukhova; A. S. Khripunova. Several versions of the compensated compactness principle. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1387-1412. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a6/