Nonzero bounded solutions of one class of nonlinear ordinary differential equations
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1373-1386 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with an ordinary differential equation of the form \begin{equation} -\psi''(x)+\biggl(1+\frac c{x^2}\biggr)\psi(x)= \frac1{x^\alpha}|\psi(x)|^{k-1}\psi(x), \qquad x>0, \tag{1} \end{equation} where $k$ and $\alpha$ are positive parameters, $k>1$, and $c$ is a constant, subject to the boundary condition \begin{equation} \psi(0)=0, \qquad \psi(+\infty)=0. \tag{2} \end{equation} A variational approach based on finding the eigenvalues of the gradient of the functional $F_{k,\alpha}(f)=\displaystyle\int_0^{+\infty}|f(s)|^{k+1}s^{-\alpha}\,ds$ acting on the space of absolutely continuous functions $H_0^1=\{f:f,f'\in L_2(0,+\infty), f(0)=0\}$ is used to show that if $c>-1/4$, $k>1$, $0<2\alpha, then problem $(1)$, $(2)$ has a countable number of nonzero solutions, at least one of which is positive. For nonzero solutions, asymptotic formulae as $x\to0$ and $x\to+\infty$ are obtained. Bibliography: 7 titles.
Keywords: differential equation, function space, weakly continuous functional, eigenfunction of the gradient of a functional.
@article{SM_2011_202_9_a5,
     author = {\`E. M. Muhamadiev and A. N. Naimov},
     title = {Nonzero bounded solutions of one class of~nonlinear ordinary differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1373--1386},
     year = {2011},
     volume = {202},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/}
}
TY  - JOUR
AU  - È. M. Muhamadiev
AU  - A. N. Naimov
TI  - Nonzero bounded solutions of one class of nonlinear ordinary differential equations
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1373
EP  - 1386
VL  - 202
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/
LA  - en
ID  - SM_2011_202_9_a5
ER  - 
%0 Journal Article
%A È. M. Muhamadiev
%A A. N. Naimov
%T Nonzero bounded solutions of one class of nonlinear ordinary differential equations
%J Sbornik. Mathematics
%D 2011
%P 1373-1386
%V 202
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/
%G en
%F SM_2011_202_9_a5
È. M. Muhamadiev; A. N. Naimov. Nonzero bounded solutions of one class of nonlinear ordinary differential equations. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1373-1386. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/

[1] I. V. Amirkhanov, E. P. Zhidkov, G. I. Makarenko, Dostatochnoe uslovie suschestvovaniya polozhitelnogo chastitsepodobnogo resheniya nelineinogo uravneniya skalyarnogo polya, Preprint R5-11705, OIYaI, Dubna, 1978

[2] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl

[3] E. M. Galeev, V. M. Tikhomirov, Optimizatsiya: teoriya, primery, zadachi, Editorial URSS, M., 2000

[4] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, New York, Wiley, 1974 | MR | MR | Zbl | Zbl

[5] M. A. Krasnoselskii, P. P. Zabreiko, Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | MR | Zbl

[6] E. M. Mukhamadiev, A. N. Naimov, “Ob asimptotike reshenii lineinykh obyknovennykh differentsialnykh uravnenii vtorogo poryadka na poluosi”, Materialy vserossiiskoi nauchno-tekhnicheskoi konferentsii “Vuzovskaya nauka – regionu”, v. I, VoGTU, Vologda, 2009, 73–79

[7] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl