Nonzero bounded solutions of one class of~nonlinear ordinary differential equations
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1373-1386

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with an ordinary differential equation of the form \begin{equation} -\psi''(x)+\biggl(1+\frac c{x^2}\biggr)\psi(x)= \frac1{x^\alpha}|\psi(x)|^{k-1}\psi(x), \qquad x>0, \tag{1} \end{equation} where $k$ and $\alpha$ are positive parameters, $k>1$, and $c$ is a constant, subject to the boundary condition \begin{equation} \psi(0)=0, \qquad \psi(+\infty)=0. \tag{2} \end{equation} A variational approach based on finding the eigenvalues of the gradient of the functional $F_{k,\alpha}(f)=\displaystyle\int_0^{+\infty}|f(s)|^{k+1}s^{-\alpha}\,ds$ acting on the space of absolutely continuous functions $H_0^1=\{f:f,f'\in L_2(0,+\infty), f(0)=0\}$ is used to show that if $c>-1/4$, $k>1$, $02\alpha$, then problem $(1)$$(2)$ has a countable number of nonzero solutions, at least one of which is positive. For nonzero solutions, asymptotic formulae as $x\to0$ and $x\to+\infty$ are obtained. Bibliography: 7 titles.
Keywords: differential equation, function space, weakly continuous functional, eigenfunction of the gradient of a functional.
@article{SM_2011_202_9_a5,
     author = {\`E. M. Muhamadiev and A. N. Naimov},
     title = {Nonzero bounded solutions of one class of~nonlinear ordinary differential equations},
     journal = {Sbornik. Mathematics},
     pages = {1373--1386},
     publisher = {mathdoc},
     volume = {202},
     number = {9},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/}
}
TY  - JOUR
AU  - È. M. Muhamadiev
AU  - A. N. Naimov
TI  - Nonzero bounded solutions of one class of~nonlinear ordinary differential equations
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1373
EP  - 1386
VL  - 202
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/
LA  - en
ID  - SM_2011_202_9_a5
ER  - 
%0 Journal Article
%A È. M. Muhamadiev
%A A. N. Naimov
%T Nonzero bounded solutions of one class of~nonlinear ordinary differential equations
%J Sbornik. Mathematics
%D 2011
%P 1373-1386
%V 202
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/
%G en
%F SM_2011_202_9_a5
È. M. Muhamadiev; A. N. Naimov. Nonzero bounded solutions of one class of~nonlinear ordinary differential equations. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1373-1386. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/