Nonzero bounded solutions of one class of~nonlinear ordinary differential equations
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1373-1386
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is concerned with an ordinary differential equation of the form
\begin{equation}
-\psi''(x)+\biggl(1+\frac c{x^2}\biggr)\psi(x)= \frac1{x^\alpha}|\psi(x)|^{k-1}\psi(x),
\qquad x>0,
\tag{1}
\end{equation}
where $k$ and $\alpha$ are positive parameters, $k>1$, and $c$ is a constant,
subject to the boundary condition
\begin{equation}
\psi(0)=0, \qquad \psi(+\infty)=0.
\tag{2}
\end{equation}
A variational approach based on finding the eigenvalues of the gradient of the functional
$F_{k,\alpha}(f)=\displaystyle\int_0^{+\infty}|f(s)|^{k+1}s^{-\alpha}\,ds$
acting on the space of absolutely continuous functions $H_0^1=\{f:f,f'\in L_2(0,+\infty), f(0)=0\}$ is used to show that if $c>-1/4$, $k>1$, $02\alpha$, then problem
$(1)$, $(2)$ has a countable number of nonzero solutions, at least one of which is positive. For nonzero solutions, asymptotic formulae as $x\to0$ and $x\to+\infty$ are obtained.
Bibliography: 7 titles.
Keywords:
differential equation, function space, weakly continuous functional, eigenfunction of the gradient of a functional.
@article{SM_2011_202_9_a5,
author = {\`E. M. Muhamadiev and A. N. Naimov},
title = {Nonzero bounded solutions of one class of~nonlinear ordinary differential equations},
journal = {Sbornik. Mathematics},
pages = {1373--1386},
publisher = {mathdoc},
volume = {202},
number = {9},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/}
}
TY - JOUR AU - È. M. Muhamadiev AU - A. N. Naimov TI - Nonzero bounded solutions of one class of~nonlinear ordinary differential equations JO - Sbornik. Mathematics PY - 2011 SP - 1373 EP - 1386 VL - 202 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/ LA - en ID - SM_2011_202_9_a5 ER -
È. M. Muhamadiev; A. N. Naimov. Nonzero bounded solutions of one class of~nonlinear ordinary differential equations. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1373-1386. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a5/