Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1347-1371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of a sphere rolling on a plane without twisting or slipping is considered. It is required to roll the sphere from one contact configuration to another so that the length of the curve described by the contact point is minimal. A parametrization of extremal trajectories is obtained. The asymptotics of extremal trajectories and the behaviour of the Maxwell time for the rolling of a sphere over sinusoids of small amplitude are studied; for such trajectories estimates for the so-called cut time are obtained. Bibliography: 21 titles.
Keywords: optimal control, geometric methods, symmetries of the exponential map, rolling of surfaces, Euler elastics.
@article{SM_2011_202_9_a4,
     author = {A. P. Mashtakov and Yu. L. Sachkov},
     title = {Extremal trajectories and the asymptotics of the {Maxwell} time in the problem of the optimal rolling of a~sphere on a~plane},
     journal = {Sbornik. Mathematics},
     pages = {1347--1371},
     year = {2011},
     volume = {202},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a4/}
}
TY  - JOUR
AU  - A. P. Mashtakov
AU  - Yu. L. Sachkov
TI  - Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1347
EP  - 1371
VL  - 202
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_9_a4/
LA  - en
ID  - SM_2011_202_9_a4
ER  - 
%0 Journal Article
%A A. P. Mashtakov
%A Yu. L. Sachkov
%T Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane
%J Sbornik. Mathematics
%D 2011
%P 1347-1371
%V 202
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2011_202_9_a4/
%G en
%F SM_2011_202_9_a4
A. P. Mashtakov; Yu. L. Sachkov. Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1347-1371. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a4/

[1] Z. Li, J. Canny, “Motion of two rigid bodies with rolling constraint”, IEEE Trans. on Robotics and Automation, 6:1 (1990), 62–72 | DOI

[2] A. Bicchi, D. Prattichizzo, S. S. Sastry, “Planning motions of rolling surfaces”, Proceedings of the 34th IEEE Conference on Decision and Control (New Orleans, LA , USA, 1995), 2812–2817 | DOI

[3] A. Marigo, A. Bicchi, “Rolling bodies with regular surface: the holonomic case”, Differential geometry and control (Boulder, CO, 1997), Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI, 1999, 241–256 | MR | Zbl

[4] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl

[5] J. M. Hammersley, “Oxford commemoration ball”, Probability, statistics and analysis, London Math. Soc. Lecture Note Ser., 79, Cambridge Univ. Press, Cambridge–New York, 1983, 112–142 | MR | Zbl

[6] A. M. Arthurs, G. R. Walsh, “On Hammersley's minimum problem for a rolling sphere”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 529–534 | DOI | MR | Zbl

[7] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl

[8] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[9] L. Eiler, “Prilozhenie I, “Ob uprugikh krivykh””, Metod nakhozhdeniya krivykh linii, obladayuschikh svoistvami maksimuma ili minimuma, ili reshenie izoperimetricheskoi zadachi, vzyatoi v samom shirokom smysle, GTTI, M.–L., 1934, 447–572

[10] A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl

[11] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | Zbl

[12] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | MR | Zbl

[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Selected works. Vol. 4. The mathematical theory of optimal processes, Classics Soviet Math., Gordon Breach, New York, 1986 | MR | MR | Zbl | Zbl

[14] Yu. L. Sachkov, “Maxwell strata in the Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl

[15] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl

[16] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, New York, 1962 | MR | Zbl | Zbl

[17] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Sb. Math., 194:9 (2003), 1331–1359 | DOI | MR | Zbl

[18] A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl

[19] V. I. Arnold, Geometriya kompleksnykh chisel, kvaternionov i spinov, MTsNMO, M., 2002

[20] L. S. Pontrjagin, Verallgemeinerungen der Zahlen, Akademie-Verlag, Berlin, 1991 | MR | MR | Zbl | Zbl

[21] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl | Zbl