@article{SM_2011_202_9_a4,
author = {A. P. Mashtakov and Yu. L. Sachkov},
title = {Extremal trajectories and the asymptotics of the {Maxwell} time in the problem of the optimal rolling of a~sphere on a~plane},
journal = {Sbornik. Mathematics},
pages = {1347--1371},
year = {2011},
volume = {202},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a4/}
}
TY - JOUR AU - A. P. Mashtakov AU - Yu. L. Sachkov TI - Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane JO - Sbornik. Mathematics PY - 2011 SP - 1347 EP - 1371 VL - 202 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2011_202_9_a4/ LA - en ID - SM_2011_202_9_a4 ER -
%0 Journal Article %A A. P. Mashtakov %A Yu. L. Sachkov %T Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane %J Sbornik. Mathematics %D 2011 %P 1347-1371 %V 202 %N 9 %U http://geodesic.mathdoc.fr/item/SM_2011_202_9_a4/ %G en %F SM_2011_202_9_a4
A. P. Mashtakov; Yu. L. Sachkov. Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1347-1371. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a4/
[1] Z. Li, J. Canny, “Motion of two rigid bodies with rolling constraint”, IEEE Trans. on Robotics and Automation, 6:1 (1990), 62–72 | DOI
[2] A. Bicchi, D. Prattichizzo, S. S. Sastry, “Planning motions of rolling surfaces”, Proceedings of the 34th IEEE Conference on Decision and Control (New Orleans, LA , USA, 1995), 2812–2817 | DOI
[3] A. Marigo, A. Bicchi, “Rolling bodies with regular surface: the holonomic case”, Differential geometry and control (Boulder, CO, 1997), Proc. Sympos. Pure Math., 64, Amer. Math. Soc., Providence, RI, 1999, 241–256 | MR | Zbl
[4] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2004 | Zbl
[5] J. M. Hammersley, “Oxford commemoration ball”, Probability, statistics and analysis, London Math. Soc. Lecture Note Ser., 79, Cambridge Univ. Press, Cambridge–New York, 1983, 112–142 | MR | Zbl
[6] A. M. Arthurs, G. R. Walsh, “On Hammersley's minimum problem for a rolling sphere”, Math. Proc. Cambridge Philos. Soc., 99:3 (1986), 529–534 | DOI | MR | Zbl
[7] V. Jurdjevic, “The geometry of the plate-ball problem”, Arch. Rational Mech. Anal., 124:4 (1993), 305–328 | DOI | MR | Zbl
[8] V. Jurdjevic, Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[9] L. Eiler, “Prilozhenie I, “Ob uprugikh krivykh””, Metod nakhozhdeniya krivykh linii, obladayuschikh svoistvami maksimuma ili minimuma, ili reshenie izoperimetricheskoi zadachi, vzyatoi v samom shirokom smysle, GTTI, M.–L., 1934, 447–572
[10] A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl
[11] Yu. L. Sachkov, “Maxwell strata and symmetries in the problem of optimal rolling of a sphere over a plane”, Sb. Math., 201:7 (2010), 1029–1051 | DOI | Zbl
[12] Yu. L. Sachkov, “Complete description of the Maxwell strata in the generalized Dido problem”, Sb. Math., 197:6 (2006), 901–950 | DOI | MR | Zbl
[13] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, Selected works. Vol. 4. The mathematical theory of optimal processes, Classics Soviet Math., Gordon Breach, New York, 1986 | MR | MR | Zbl | Zbl
[14] Yu. L. Sachkov, “Maxwell strata in the Euler elastic problem”, J. Dyn. Control Syst., 14:2 (2008), 169–234 | DOI | MR | Zbl
[15] I. Moiseev, Yu. L. Sachkov, “Maxwell strata in sub-Riemannian problem on the group of motions of a plane”, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl
[16] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Univ. Press, New York, 1962 | MR | Zbl | Zbl
[17] Yu. L. Sachkov, “Exponential map in the generalized Dido problem”, Sb. Math., 194:9 (2003), 1331–1359 | DOI | MR | Zbl
[18] A. Agrachev, B. Bonnard, M. Chyba, I. Kupka, “Sub-Riemannian sphere in Martinet flat case”, ESAIM Control Optim. Calc. Var., 2 (1997), 377–448 | DOI | MR | Zbl
[19] V. I. Arnold, Geometriya kompleksnykh chisel, kvaternionov i spinov, MTsNMO, M., 2002
[20] L. S. Pontrjagin, Verallgemeinerungen der Zahlen, Akademie-Verlag, Berlin, 1991 | MR | MR | Zbl | Zbl
[21] E. T. Whittaker, A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl | Zbl