Direct and inverse theorems of rational approximation in the Bergman space
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1327-1346

Voir la notice de l'article provenant de la source Math-Net.Ru

For positive numbers $p$ and $\mu$ let $A_{p,\mu}$ denote the Bergman space of analytic functions in the half-plane $\Pi:=\{z\in\mathbb C:\operatorname{Im} z>0\}$. For $f\in A_{p,\mu}$ let $R_n (f)_{p,\mu}$ be the best approximation by rational functions of degree at most $n$. Also let $\alpha\in\mathbb R$ and $\tau>0$ be numbers such that $\alpha+\mu=\frac{1}{\tau}-\frac{1}{p}>0$ and $\frac{1}{p}+\mu\notin\mathbb N$. Then the main result of the paper claims that the set of functions $f\in A_{p,\mu}$ such that $$ \sum_{n=1}^\infty\frac{1}{n}(n^{\alpha+\mu} R_n (f)_{p,\mu})^\tau\infty $$ is precisely the Besov space $B_\tau^\alpha$ of analytic functions in $\Pi$. Bibliography: 23 titles.
Keywords: direct and inverse theorems of rational approximation, Bernstein-type inequalities, Jackson-type inequalities, Bergman spaces
Mots-clés : Besov spaces.
@article{SM_2011_202_9_a3,
     author = {T. S. Mardvilko and A. A. Pekarskii},
     title = {Direct and inverse theorems of rational approximation in the {Bergman} space},
     journal = {Sbornik. Mathematics},
     pages = {1327--1346},
     publisher = {mathdoc},
     volume = {202},
     number = {9},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/}
}
TY  - JOUR
AU  - T. S. Mardvilko
AU  - A. A. Pekarskii
TI  - Direct and inverse theorems of rational approximation in the Bergman space
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1327
EP  - 1346
VL  - 202
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/
LA  - en
ID  - SM_2011_202_9_a3
ER  - 
%0 Journal Article
%A T. S. Mardvilko
%A A. A. Pekarskii
%T Direct and inverse theorems of rational approximation in the Bergman space
%J Sbornik. Mathematics
%D 2011
%P 1327-1346
%V 202
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/
%G en
%F SM_2011_202_9_a3
T. S. Mardvilko; A. A. Pekarskii. Direct and inverse theorems of rational approximation in the Bergman space. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1327-1346. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/