Direct and inverse theorems of rational approximation in the Bergman space
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1327-1346
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For positive numbers $p$ and $\mu$ let $A_{p,\mu}$ denote the Bergman space of analytic functions in the half-plane $\Pi:=\{z\in\mathbb C:\operatorname{Im} z>0\}$. For $f\in A_{p,\mu}$ let $R_n (f)_{p,\mu}$ be the best approximation by rational functions of degree at most $n$. Also let $\alpha\in\mathbb R$ and $\tau>0$ be numbers such that $\alpha+\mu=\frac{1}{\tau}-\frac{1}{p}>0$ and $\frac{1}{p}+\mu\notin\mathbb N$. Then the main result of the paper claims that the set of functions $f\in A_{p,\mu}$ such that
$$
\sum_{n=1}^\infty\frac{1}{n}(n^{\alpha+\mu} R_n (f)_{p,\mu})^\tau\infty
$$
is precisely the Besov space $B_\tau^\alpha$ of analytic functions in $\Pi$.
Bibliography: 23 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
direct and inverse theorems of rational approximation, Bernstein-type inequalities, Jackson-type inequalities,
Bergman spaces
Mots-clés : Besov spaces.
                    
                  
                
                
                Mots-clés : Besov spaces.
@article{SM_2011_202_9_a3,
     author = {T. S. Mardvilko and A. A. Pekarskii},
     title = {Direct and inverse theorems of rational approximation in the {Bergman} space},
     journal = {Sbornik. Mathematics},
     pages = {1327--1346},
     publisher = {mathdoc},
     volume = {202},
     number = {9},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/}
}
                      
                      
                    TY - JOUR AU - T. S. Mardvilko AU - A. A. Pekarskii TI - Direct and inverse theorems of rational approximation in the Bergman space JO - Sbornik. Mathematics PY - 2011 SP - 1327 EP - 1346 VL - 202 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/ LA - en ID - SM_2011_202_9_a3 ER -
T. S. Mardvilko; A. A. Pekarskii. Direct and inverse theorems of rational approximation in the Bergman space. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1327-1346. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/
