Direct and inverse theorems of rational approximation in the Bergman space
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1327-1346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For positive numbers $p$ and $\mu$ let $A_{p,\mu}$ denote the Bergman space of analytic functions in the half-plane $\Pi:=\{z\in\mathbb C:\operatorname{Im} z>0\}$. For $f\in A_{p,\mu}$ let $R_n (f)_{p,\mu}$ be the best approximation by rational functions of degree at most $n$. Also let $\alpha\in\mathbb R$ and $\tau>0$ be numbers such that $\alpha+\mu=\frac{1}{\tau}-\frac{1}{p}>0$ and $\frac{1}{p}+\mu\notin\mathbb N$. Then the main result of the paper claims that the set of functions $f\in A_{p,\mu}$ such that $$ \sum_{n=1}^\infty\frac{1}{n}(n^{\alpha+\mu} R_n (f)_{p,\mu})^\tau<\infty $$ is precisely the Besov space $B_\tau^\alpha$ of analytic functions in $\Pi$. Bibliography: 23 titles.
Keywords: direct and inverse theorems of rational approximation, Bernstein-type inequalities, Jackson-type inequalities, Bergman spaces
Mots-clés : Besov spaces.
@article{SM_2011_202_9_a3,
     author = {T. S. Mardvilko and A. A. Pekarskii},
     title = {Direct and inverse theorems of rational approximation in the {Bergman} space},
     journal = {Sbornik. Mathematics},
     pages = {1327--1346},
     year = {2011},
     volume = {202},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/}
}
TY  - JOUR
AU  - T. S. Mardvilko
AU  - A. A. Pekarskii
TI  - Direct and inverse theorems of rational approximation in the Bergman space
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1327
EP  - 1346
VL  - 202
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/
LA  - en
ID  - SM_2011_202_9_a3
ER  - 
%0 Journal Article
%A T. S. Mardvilko
%A A. A. Pekarskii
%T Direct and inverse theorems of rational approximation in the Bergman space
%J Sbornik. Mathematics
%D 2011
%P 1327-1346
%V 202
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/
%G en
%F SM_2011_202_9_a3
T. S. Mardvilko; A. A. Pekarskii. Direct and inverse theorems of rational approximation in the Bergman space. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1327-1346. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/

[1] R. Rochberg, “Decomposition theorems for Bergman spaces and their applications”, Operators and function theory (Lancaster, 1984), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 153, Reidel, Dordrecht, 1985, 225–277 | MR | Zbl

[2] K. Zhu, Spaces of holomorphic functions in the unit ball, Grad. Texts in Math., 226, Springer-Verlag, New York, 2005 | MR | Zbl

[3] A. A. Pekarskiǐ, “Classes of analytic functions determined by best rational approximations in $H_p$”, Math. USSR-Sb., 55:1 (1986), 1–18 | DOI | MR | Zbl | Zbl

[4] R. R. Coifman, R. Rochberg, “Representation theorems for holomorphic and harmonic functions in $L^p$”, Representation theorems for Hardy spaces, Astérisque, 77, Soc. Math. France, Paris, 1989, 11–66 | MR | Zbl

[5] E. Dyn'kin, “Rational functions in Bergman spaces”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhüser, Basel, 2000, 77–94 | MR | Zbl

[6] V. R. Misyuk, “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii otnositelno ploskoi mery”, Tr. IM NAN Belarusi, 9 (2001), 105–108

[7] T. S. Mardvilko, “Neravenstvo dlya kvazinorm ratsionalnoi funktsii otnositelno lineinoi i ploskoi mer i ego prilozheniya”, Vestn. NAN Belarusi. Ser. fiz.-matem. nauk, 1 (2010), 41–48 | MR

[8] A. A. Pekarskii, H. Stahl, “Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p1$”, Sb. Math., 186:1 (1995), 121–131 | DOI | MR | Zbl

[9] T. S. Mardvilko, A. A. Pekarskii, “Ratsionalnaya approksimatsiya v prostranstve Bergmana v poluploskosti”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 15-i Saratovskoi zimnei shkoly, Izd-vo Saratovskogo un-ta, Saratov, 2010, 113–115

[10] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl

[11] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl

[12] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl

[13] A. A. Pekarskii, “Obobschennaya ratsionalnaya approksimatsiya v kruge”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 6 (1990), 9–14 | MR | Zbl

[14] A. A. Pekarskii, “Approximation by rational functions with free poles”, East J. Approx., 13:3 (2007), 227–319 | MR

[15] J. E. Brennan, “Point evaluations, invariant subspaces and approximation in the mean by polynomials”, J. Funct. Anal., 34:3 (1979), 407–420 | DOI | MR | Zbl

[16] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl

[17] F. A. Šamojan, “Embedding theorems and a characterization of traces in the spaces $H^p(U^n)$, $0

\infty$”, Math. USSR-Sb., 35:5 (1979), 709–725 | DOI | MR | Zbl | Zbl

[18] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Toronto, ON–New York–London, 1966 | MR | MR | Zbl | Zbl

[19] V. I. Belyǐ, “Modern methods of the geometric theory of functions of a complex variable in approximation problems”, St. Petersburg Math. J., 9:3 (1998), 421–453 | MR | Zbl

[20] A. A. Pekarskii, “Rational approximation of functions with derivatives in a V. I. Smirnov space”, St. Petersburg Math. J., 13:2 (2002), 281–300 | MR | Zbl

[21] G. David, “Opérateurs intégraux singuliers sur certaines courbes du plan complexe”, Ann. Sci. École Norm. Sup. (4), 17:1 (1984), 157–189 | MR | Zbl

[22] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl

[23] P. L. Duren, Theory of $H^p$ spaces, Academic Press, New York–London, 1970 | MR | Zbl