Mots-clés : Besov spaces.
@article{SM_2011_202_9_a3,
author = {T. S. Mardvilko and A. A. Pekarskii},
title = {Direct and inverse theorems of rational approximation in the {Bergman} space},
journal = {Sbornik. Mathematics},
pages = {1327--1346},
year = {2011},
volume = {202},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/}
}
T. S. Mardvilko; A. A. Pekarskii. Direct and inverse theorems of rational approximation in the Bergman space. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1327-1346. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a3/
[1] R. Rochberg, “Decomposition theorems for Bergman spaces and their applications”, Operators and function theory (Lancaster, 1984), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 153, Reidel, Dordrecht, 1985, 225–277 | MR | Zbl
[2] K. Zhu, Spaces of holomorphic functions in the unit ball, Grad. Texts in Math., 226, Springer-Verlag, New York, 2005 | MR | Zbl
[3] A. A. Pekarskiǐ, “Classes of analytic functions determined by best rational approximations in $H_p$”, Math. USSR-Sb., 55:1 (1986), 1–18 | DOI | MR | Zbl | Zbl
[4] R. R. Coifman, R. Rochberg, “Representation theorems for holomorphic and harmonic functions in $L^p$”, Representation theorems for Hardy spaces, Astérisque, 77, Soc. Math. France, Paris, 1989, 11–66 | MR | Zbl
[5] E. Dyn'kin, “Rational functions in Bergman spaces”, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhüser, Basel, 2000, 77–94 | MR | Zbl
[6] V. R. Misyuk, “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii otnositelno ploskoi mery”, Tr. IM NAN Belarusi, 9 (2001), 105–108
[7] T. S. Mardvilko, “Neravenstvo dlya kvazinorm ratsionalnoi funktsii otnositelno lineinoi i ploskoi mer i ego prilozheniya”, Vestn. NAN Belarusi. Ser. fiz.-matem. nauk, 1 (2010), 41–48 | MR
[8] A. A. Pekarskii, H. Stahl, “Bernstein type inequalities for derivatives of rational functions in $L_p$ spaces for $p1$”, Sb. Math., 186:1 (1995), 121–131 | DOI | MR | Zbl
[9] T. S. Mardvilko, A. A. Pekarskii, “Ratsionalnaya approksimatsiya v prostranstve Bergmana v poluploskosti”, Sovremennye problemy teorii funktsii i ikh prilozheniya, Materialy 15-i Saratovskoi zimnei shkoly, Izd-vo Saratovskogo un-ta, Saratov, 2010, 113–115
[10] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl
[11] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl
[12] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl
[13] A. A. Pekarskii, “Obobschennaya ratsionalnaya approksimatsiya v kruge”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 6 (1990), 9–14 | MR | Zbl
[14] A. A. Pekarskii, “Approximation by rational functions with free poles”, East J. Approx., 13:3 (2007), 227–319 | MR
[15] J. E. Brennan, “Point evaluations, invariant subspaces and approximation in the mean by polynomials”, J. Funct. Anal., 34:3 (1979), 407–420 | DOI | MR | Zbl
[16] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR | MR | Zbl | Zbl
[17] F. A. Šamojan, “Embedding theorems and a characterization of traces in the spaces $H^p(U^n)$, $0
\infty$”, Math. USSR-Sb., 35:5 (1979), 709–725 | DOI | MR | Zbl | Zbl[18] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Toronto, ON–New York–London, 1966 | MR | MR | Zbl | Zbl
[19] V. I. Belyǐ, “Modern methods of the geometric theory of functions of a complex variable in approximation problems”, St. Petersburg Math. J., 9:3 (1998), 421–453 | MR | Zbl
[20] A. A. Pekarskii, “Rational approximation of functions with derivatives in a V. I. Smirnov space”, St. Petersburg Math. J., 13:2 (2002), 281–300 | MR | Zbl
[21] G. David, “Opérateurs intégraux singuliers sur certaines courbes du plan complexe”, Ann. Sci. École Norm. Sup. (4), 17:1 (1984), 157–189 | MR | Zbl
[22] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl
[23] P. L. Duren, Theory of $H^p$ spaces, Academic Press, New York–London, 1970 | MR | Zbl