Mots-clés : Euler tour, Gauss circuit
@article{SM_2011_202_9_a2,
author = {D. P. Il'yutko},
title = {Framed $4$-graphs: {Euler} tours, {Gauss} circuits and rotating circuits},
journal = {Sbornik. Mathematics},
pages = {1303--1326},
year = {2011},
volume = {202},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a2/}
}
D. P. Il'yutko. Framed $4$-graphs: Euler tours, Gauss circuits and rotating circuits. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1303-1326. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a2/
[1] D. P. Ilyutko, V. O. Manturov, “Introduction to graph-link theory”, J. Knot Theory Ramifications, 18:6 (2009), 791–823 | DOI | MR | Zbl
[2] D. P. Ilyutko, V. O. Manturov, “Graph-links”, Dokl. Math., 80:2 (2009), 739–742 | DOI | MR | Zbl
[3] V. O. Manturov, “Embeddings of 4-valent framed graphs into 2-surfaces”, Dokl. Math., 79:1 (2009), 56–58 | DOI | MR
[4] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl
[5] S. V. Chmutov, S. V. Duzhin, S. K. Lando, “Vassiliev knot invariants. I. Introduction”, Singularities and bifurcations, Adv. Soviet Math., 21, Amer. Math. Soc., Providence, RI, 1994, 117–126 ; “II. Intersection graph conjecture for trees”, 127–134 ; “III. Forest algebra and weighted graphs”, 135–145 | MR | Zbl | MR | Zbl | MR | Zbl
[6] M. Goussarov, M. Polyak, O. Viro, “Finite-type invariants of classical and virtual knots”, Topology, 39:5 (2000), 1045–1068 | DOI | MR | Zbl
[7] G. Cairns, D. M. Elton, “The planarity problem for signed Gauss words”, J. Knot Theory Ramifications, 2:4 (1993), 359–367 | DOI | MR | Zbl
[8] G. Cairns, D. M. Elton, “The planarity problem. II”, J. Knot Theory Ramifications, 5:2 (1996), 137–144 | DOI | MR | Zbl
[9] R. C. Read, P. Rosenstiehl, “On the Gauss crossing problem”, Combinatorics (Keszthely, Hungary, 1976), Colloq. Math. Soc. Janos Bolyai, 18, North-Holland, Amsterdam–New-York, 1978 | MR | Zbl
[10] V. O. Manturov, “A proof of Vassiliev's conjecture on the planarity of singular links”, Izv. Math., 69:5 (2005), 1025–1033 | DOI | MR | Zbl
[11] V. Manturov, Knot theory, Chapman Hall, Boca Raton, FL, 2004 | MR | Zbl
[12] A. Kotzig, “Eulerian lines in finite 4-valent graphs and their transformations”, Theory of graphs (Tihany, Hungary, 1966), Academic Press, New York, 1968, 219–230 | MR | Zbl
[13] V. G. Turaev, “Cobordisms of words”, Commun. Contemp. Math., 10, suppl. 1 (2008), 927–972 ; arXiv: math.CO/0511513v2 | DOI | MR | Zbl
[14] D. Bar-Natan, S. Garoufalidis, “On the Melvin–Morton–Rozansky conjecture”, Invent. Math., 125:1 (1996), 103–133 | DOI | MR | Zbl
[15] M. Cohn, A. Lempel, “Cycle decomposition by disjoint transpositions”, J. Combinatorial Theory Ser. A, 13:1 (1972), 83–89 | DOI | MR | Zbl
[16] G. Moran, “Chords in a circle and linear algebra over $GF(2)$”, J. Combin. Theory Ser. A, 37:3 (1984), 239–247 | DOI | MR | Zbl
[17] E. Soboleva, “Vassiliev knot invariants coming from Lie algebras and 4-invariants”, J. Knot Theory Ramifications, 10:1 (2001), 161–169 | DOI | MR | Zbl
[18] L. Traldi, Binary nullity, Euler circuits and interlace polynomials, arXiv: 0903.4405
[19] J. Jonsson, “On the number of Euler trails in directed graphs”, Math. Scand., 90:2 (2002), 191–214 | MR | Zbl
[20] V. O. Manturov, “The bracket semigroup of knots”, Math. Notes, 67:4 (2000), 468–478 | DOI | MR | Zbl
[21] A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems (with arbitrary many degrees of freedom). Molecular table of all integrable systems with two degrees of freedom”, Topological classification of integrable systems, Adv. Soviet Math., 6, Amer. Math. Soc., Providence, RI, 1991, 1–35 | MR | Zbl
[22] A. Bouchet, “Circle graph obstructions”, J. Combin. Theory Ser. B, 60:1 (1994), 107–144 | DOI | MR | Zbl
[23] D. P. Ilyutko, An equivalence between the set of graph-knots and the set of homotopy classes of looped graphs, arXiv: 1001.0360
[24] L. Traldi, L. Zulli, A bracket polynomial for graphs, arXiv: 0808.3392