On the structure of invariant measures for set-valued maps
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1285-1302
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Properties of measures invariant with respect to set-valued maps are studied. It is shown that an absolutely continuous invariant measure for a set-valued map need not be unique, and the set of all invariant measures need not be a Choquet simplex. The problem concerning the existence of invariant measures
with respect to set-valued maps parametrized by single-valued and set-valued maps of the circle having various smoothness classes is studied.
Bibliography: 13 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
set-valued maps, invariant measure
Mots-clés : Choquet simplex.
                    
                  
                
                
                Mots-clés : Choquet simplex.
@article{SM_2011_202_9_a1,
     author = {A. N. Gorbachev and A. M. Stepin},
     title = {On the structure of invariant measures for set-valued maps},
     journal = {Sbornik. Mathematics},
     pages = {1285--1302},
     publisher = {mathdoc},
     volume = {202},
     number = {9},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_9_a1/}
}
                      
                      
                    A. N. Gorbachev; A. M. Stepin. On the structure of invariant measures for set-valued maps. Sbornik. Mathematics, Tome 202 (2011) no. 9, pp. 1285-1302. http://geodesic.mathdoc.fr/item/SM_2011_202_9_a1/
