A generalization of Gelfond's and Waldschmidt's theorems on integer-valued entire functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1207-1229
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Several generalizations of Gelfond's and Waldschmidt's theorems are obtained, which generalize in their turn Pólya's well-known result on integer-valued entire functions.
Bibliography: 19 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
entire function, integer-valued function, finite extension, Newton interpolation series.
                    
                    
                    
                  
                
                
                @article{SM_2011_202_8_a5,
     author = {I. P. Rochev},
     title = {A generalization of {Gelfond's} and {Waldschmidt's} theorems on integer-valued entire functions},
     journal = {Sbornik. Mathematics},
     pages = {1207--1229},
     publisher = {mathdoc},
     volume = {202},
     number = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a5/}
}
                      
                      
                    I. P. Rochev. A generalization of Gelfond's and Waldschmidt's theorems on integer-valued entire functions. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1207-1229. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a5/
