A generalization of Gelfond's and Waldschmidt's theorems on integer-valued entire functions
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1207-1229

Voir la notice de l'article provenant de la source Math-Net.Ru

Several generalizations of Gelfond's and Waldschmidt's theorems are obtained, which generalize in their turn Pólya's well-known result on integer-valued entire functions. Bibliography: 19 titles.
Keywords: entire function, integer-valued function, finite extension, Newton interpolation series.
@article{SM_2011_202_8_a5,
     author = {I. P. Rochev},
     title = {A generalization of {Gelfond's} and {Waldschmidt's} theorems on integer-valued entire functions},
     journal = {Sbornik. Mathematics},
     pages = {1207--1229},
     publisher = {mathdoc},
     volume = {202},
     number = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a5/}
}
TY  - JOUR
AU  - I. P. Rochev
TI  - A generalization of Gelfond's and Waldschmidt's theorems on integer-valued entire functions
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1207
EP  - 1229
VL  - 202
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_8_a5/
LA  - en
ID  - SM_2011_202_8_a5
ER  - 
%0 Journal Article
%A I. P. Rochev
%T A generalization of Gelfond's and Waldschmidt's theorems on integer-valued entire functions
%J Sbornik. Mathematics
%D 2011
%P 1207-1229
%V 202
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_8_a5/
%G en
%F SM_2011_202_8_a5
I. P. Rochev. A generalization of Gelfond's and Waldschmidt's theorems on integer-valued entire functions. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1207-1229. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a5/