@article{SM_2011_202_8_a5,
author = {I. P. Rochev},
title = {A generalization of {Gelfond's} and {Waldschmidt's} theorems on integer-valued entire functions},
journal = {Sbornik. Mathematics},
pages = {1207--1229},
year = {2011},
volume = {202},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a5/}
}
I. P. Rochev. A generalization of Gelfond's and Waldschmidt's theorems on integer-valued entire functions. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1207-1229. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a5/
[1] G. Pólya, “Ueber ganzwertige ganze Funktionen”, Rend. Circ. Mat. Palermo, 40:1 (1915), 1–16 | DOI | Zbl
[2] G. H. Hardy, “On a theorem of Mr. G. Pólya”, Math. Proc. Cambridge Philos. Soc., 19 (1917), 60–63 | Zbl
[3] E. Landau, “Note on Mr. Hardy's extension of a theorem of Mr. Pólya”, Math. Proc. Cambridge Philos. Soc., 20 (1920), 14–15 | Zbl
[4] G. Pólya, “Über ganze ganzwertige Funktionen”, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1920, 1–10 | Zbl
[5] L. Bieberbach, Analytische Fortsetzung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1955 | MR | MR | Zbl | Zbl
[6] D. Sato, “Utterly integer valued entire functions. I”, Pacific J. Math., 118:2 (1985), 523–530 | MR | Zbl
[7] M. Welter, “Sur un théorème de Gelfond–Selberg et une conjecture de Bundschuh–Shiokawa”, Acta Arith., 116:4 (2005), 363–385 | DOI | MR | Zbl
[8] T. Rivoal, M. Welter, “Sur les fonctions arithmétiques non entières”, Israel J. Math., 169:1 (2009), 155–179 | DOI | MR | Zbl
[9] A. Gelfond, “Sur un théorème de M. G. Pólya”, Atti Accad. Naz. Lincei, 10 (1929), 569–574 | Zbl
[10] A. Selberg, “Über einen Satz von A. Gelfond”, Arch. Math. Naturvid., 44 (1941), 159–170 | MR | Zbl
[11] P. Bundschuh, W. Zudilin, “On theorems of Gelfond and Selberg concerning integral-valued entire functions”, J. Approx. Theory, 130:2 (2004), 164–178 | DOI | MR | Zbl
[12] M. Waldschmidt, “Pólya's theorem by Schneider's method”, Acta Math. Acad. Sci. Hungar., 31:1–2 (1978), 21–25 | DOI | MR | Zbl
[13] M. Waldschmidt, “Extrapolation et alternants”, Groupe d'études sur les problèmes Diophantiens 1992–1993, 108, Publ. Math. Univ. Pierre Marie Curie, Paris, 1994; http://www.math.jussieu.fr/~miw/articles/ps/EA.ps
[14] I. P. Rochev, “On a generalization of Pólya's theorem”, Math. Notes, 81:1–2 (2007), 247–259 | DOI | MR | Zbl
[15] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, v. I, Springer-Verlag, Berlin–New York, 1964 | MR | MR | Zbl
[16] M. Valdshmidt, Yu. V. Nesterenko, “O priblizhenii algebraicheskimi chislami znachenii eksponentsialnoi funktsii i logarifma”, Diofantovy priblizheniya, Matem. zapiski, 2, 1996, 23–42; Yu. Nesterenko, M. Waldschmidt, On the approximation of the values of exponential function and logarithm by algebraic numbers, arXiv: math/0002047
[17] A. B. Shidlovskii, Transcendental numbers, de Gruyter Stud. Math., 12, de Gruyter, Berlin, 1989 | MR | MR | Zbl | Zbl
[18] E. Bombieri, J. Vaaler, “On Siegel's lemma”, Invent. Math., 73:1 (1983), 11–32 | DOI | MR | Zbl
[19] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934 | MR | MR | Zbl