The order of a homotopy invariant in the stable case
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1183-1206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X$, $Y$ be cell complexes, let $U$ be an Abelian group, and let $f\colon[X,Y]\to U$ be a homotopy invariant. By definition, the invariant $f$ has order at most $r$ if the characteristic function of the $r$th Cartesian power of the graph of a continuous map $a\colon X\to Y$ determines the value $f([a])$ $\mathbb{Z}$-linearly. It is proved that, in the stable case (that is, when $\operatorname{dim} X<2n-1$, and $Y$ is $(n-1)$-connected for some natural number $n$), for a finite cell complex $X$ the order of the invariant $f$ is equal to its degree with respect to the Curtis filtration of the group $[X,Y]$. Bibliography: 9 titles.
Keywords: invariants of finite order
Mots-clés : stable homotopy, Curtis filtration.
@article{SM_2011_202_8_a4,
     author = {S. S. Podkorytov},
     title = {The order of a~homotopy invariant in the stable case},
     journal = {Sbornik. Mathematics},
     pages = {1183--1206},
     year = {2011},
     volume = {202},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a4/}
}
TY  - JOUR
AU  - S. S. Podkorytov
TI  - The order of a homotopy invariant in the stable case
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1183
EP  - 1206
VL  - 202
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_8_a4/
LA  - en
ID  - SM_2011_202_8_a4
ER  - 
%0 Journal Article
%A S. S. Podkorytov
%T The order of a homotopy invariant in the stable case
%J Sbornik. Mathematics
%D 2011
%P 1183-1206
%V 202
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2011_202_8_a4/
%G en
%F SM_2011_202_8_a4
S. S. Podkorytov. The order of a homotopy invariant in the stable case. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1183-1206. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a4/

[1] E. B. Curtis, “Some relations between homotopy and homology”, Ann. of Math. (2), 82:3 (1965), 386–413 | DOI | MR | Zbl

[2] S. S. Podkorytov, “Mappings of the sphere to a simply connected space”, J. Math. Sci. (N. Y.), 140:4 (2007), 589–610 | DOI | MR | Zbl

[3] S. S. Podkorytov, “An alternative proof of a weak form of Serre's theorem”, J. Math. Sci. (New York), 110:4 (2002), 2875–2881 | DOI | MR | Zbl

[4] S. S. Podkorytov, “Order of a function on the Bruschlinsky group”, J. Math. Sci. (New York), 110:4 (2002), 2882–2885 | DOI | MR | Zbl

[5] A. Dold, R. Thom, “Quasifaserungen und unendliche symmetrische Produkte”, Ann. of Math. (2), 67:2 (1958), 239–281 | DOI | MR | Zbl

[6] P. G. Goerss, J. F. Jardine, Simplicial homotopy theory, Progr. Math., 174, Birkhäuser, Basel, 1999 | MR | Zbl

[7] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, New York, 1967 | MR | MR | Zbl | Zbl

[8] J.-P. Serre, Lie algebras and Lie groups, Benjamin, New York–Amsterdam, 1965 | MR | MR | Zbl | Zbl

[9] I. B. S. Passi, Group rings and their augmentation ideals, Lect. Notes Math., 715, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | DOI | MR | Zbl