Mots-clés : stable homotopy, Curtis filtration.
@article{SM_2011_202_8_a4,
author = {S. S. Podkorytov},
title = {The order of a~homotopy invariant in the stable case},
journal = {Sbornik. Mathematics},
pages = {1183--1206},
year = {2011},
volume = {202},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a4/}
}
S. S. Podkorytov. The order of a homotopy invariant in the stable case. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1183-1206. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a4/
[1] E. B. Curtis, “Some relations between homotopy and homology”, Ann. of Math. (2), 82:3 (1965), 386–413 | DOI | MR | Zbl
[2] S. S. Podkorytov, “Mappings of the sphere to a simply connected space”, J. Math. Sci. (N. Y.), 140:4 (2007), 589–610 | DOI | MR | Zbl
[3] S. S. Podkorytov, “An alternative proof of a weak form of Serre's theorem”, J. Math. Sci. (New York), 110:4 (2002), 2875–2881 | DOI | MR | Zbl
[4] S. S. Podkorytov, “Order of a function on the Bruschlinsky group”, J. Math. Sci. (New York), 110:4 (2002), 2882–2885 | DOI | MR | Zbl
[5] A. Dold, R. Thom, “Quasifaserungen und unendliche symmetrische Produkte”, Ann. of Math. (2), 67:2 (1958), 239–281 | DOI | MR | Zbl
[6] P. G. Goerss, J. F. Jardine, Simplicial homotopy theory, Progr. Math., 174, Birkhäuser, Basel, 1999 | MR | Zbl
[7] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Springer-Verlag, New York, 1967 | MR | MR | Zbl | Zbl
[8] J.-P. Serre, Lie algebras and Lie groups, Benjamin, New York–Amsterdam, 1965 | MR | MR | Zbl | Zbl
[9] I. B. S. Passi, Group rings and their augmentation ideals, Lect. Notes Math., 715, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | DOI | MR | Zbl