The order of a~homotopy invariant in the stable case
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1183-1206
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$, $Y$ be cell complexes, let $U$ be an Abelian group, and let $f\colon[X,Y]\to U$ be a homotopy invariant. By definition, the invariant $f$ has order at most $r$ if the characteristic function of the $r$th
Cartesian power of the graph of a continuous map $a\colon X\to Y$ determines the value $f([a])$
$\mathbb{Z}$-linearly. It is proved that, in the stable case (that is, when $\operatorname{dim} X2n-1$, and $Y$ is $(n-1)$-connected for some natural number $n$), for a finite cell complex $X$ the order of the invariant $f$ is equal to its degree with respect to the Curtis filtration of the group $[X,Y]$.
Bibliography: 9 titles.
Keywords:
invariants of finite order
Mots-clés : stable homotopy, Curtis filtration.
Mots-clés : stable homotopy, Curtis filtration.
@article{SM_2011_202_8_a4,
author = {S. S. Podkorytov},
title = {The order of a~homotopy invariant in the stable case},
journal = {Sbornik. Mathematics},
pages = {1183--1206},
publisher = {mathdoc},
volume = {202},
number = {8},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a4/}
}
S. S. Podkorytov. The order of a~homotopy invariant in the stable case. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1183-1206. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a4/