Homogenization of a thin plate reinforced with periodic families of rigid rods
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1127-1168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotics of the solution to the elastic bending problem for a thin plate reinforced with several periodic families of closely spaced but disjoint rods are constructed and justified, the result of homogenization being substantially different from the case when the rods are welded together into a single periodic mesh. The material in the rods is assumed to be appreciably more rigid than that in the plate. An averaged fourth-order differential operator is obtained from summing the nonelliptic operators generated by each of the families of the rods. This operator is shown to be elliptic if and only if the rods from at least two families are nonparallel. As a simplified example, the paper examines a similar stationary heat conduction problem. Bibliography: 24 titles.
Keywords: thin plate, homogenization, asymptotics, composite material.
@article{SM_2011_202_8_a2,
     author = {S. A. Nazarov and G. H. Sweers and A. S. Slutskij},
     title = {Homogenization of a~thin plate reinforced with periodic families of rigid rods},
     journal = {Sbornik. Mathematics},
     pages = {1127--1168},
     year = {2011},
     volume = {202},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - G. H. Sweers
AU  - A. S. Slutskij
TI  - Homogenization of a thin plate reinforced with periodic families of rigid rods
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1127
EP  - 1168
VL  - 202
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/
LA  - en
ID  - SM_2011_202_8_a2
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A G. H. Sweers
%A A. S. Slutskij
%T Homogenization of a thin plate reinforced with periodic families of rigid rods
%J Sbornik. Mathematics
%D 2011
%P 1127-1168
%V 202
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/
%G en
%F SM_2011_202_8_a2
S. A. Nazarov; G. H. Sweers; A. S. Slutskij. Homogenization of a thin plate reinforced with periodic families of rigid rods. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1127-1168. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/

[1] S. A. Nazarov, G. H. Sweers, A. S. Slutskii, “The heat conductivity problem in a thin plate with contrasting fiber inclusions”, Vestnik St. Petersburg Univ. Math., 42:4 (2009), 284–292 | DOI | MR | Zbl

[2] S. G. Lekhnitskiǐ, Theory of elasticity of an anisotropic elastic body, Holden-Day, San Francisco, 1963 | MR | MR | Zbl | Zbl

[3] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002

[4] S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106 | DOI | MR | Zbl

[5] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[6] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR

[7] K. O. Friedrichs, “On the boundary-value problems of the theory of elasticity and Korn's inequality”, Ann. of Math. (2), 48 (1947), 441–471 | DOI | MR | Zbl

[8] P. P. Mosolov, V. P. Myasnikov, “A proof of Korn's inequality”, Soviet Math. Dokl., 12 (1971), 1618–1622 | MR | Zbl

[9] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR | MR | Zbl | Zbl

[10] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl | Zbl

[11] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl

[12] G. Fichera, Existence theorems in elasticity, Springer-Verlag, Berlin, 1972

[13] M. V. Kozlova, G. P. Panasenko, “Averaging of a three-dimensional problem of elasticity theory for an inhomogeneous rod”, U.S.S.R. Comput. Math. Math. Phys., 31:10 (1991), 128–131 | MR | Zbl | Zbl

[14] H. Le Dret, “Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero”, Asymptotic Anal., 10:4 (1995), 367–402 | MR | Zbl

[15] S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates”, J. Math. Sci. (New York), 97:4 (1999), 4245–4279 | MR | Zbl

[16] S. A. Nazarov, “Minimal conditions on the smoothness of data which preserve the accuracy of a one-dimensional model of rods”, J. Math. Sci. (New York), 101:2 (2000), 2975–2986 | MR | Zbl

[17] S. A. Nazarov, A. S. Slutskii, “One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification”, Izv. Math., 64:3 (2000), 531–562 | DOI | MR | Zbl

[18] A. Majd, “On the asymptotic analysis of a non-symmetric bar”, M2AN Math. Model. Numer. Anal., 34:5 (2000), 1069–1085 | DOI | MR | Zbl

[19] V. L. Berdichevsky, Variational principles of continuum mechanics, Interact. Mech. Math., Springer–Verlag, Berlin, 2009 | MR | MR | Zbl | Zbl

[20] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl

[21] J. Sanchez Hubert, E. Sánchez-Palencia, Introduction aux Méthodes Asymptotiques et à l'Homogénéisation Application à la Mécanique des Milex Continues, Masson, Paris, 1992

[22] E. A. Akimova, S. A. Nazarov, G. A. Chechkin, “Asymptotics of the solution of the problem of deformation of an arbitrary locally periodic thin plate”, Trans. Mosc. Math. Soc., 2004, 1–29 | MR | Zbl

[23] S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Russian Math. Surveys, 63:1 (2008), 35–107 | DOI | MR | Zbl

[24] S. A. Nazarov, A. S. Slutskij, G. H. Sweers, “Korn's inequalities for a reinforced plate”, J. Elasticity, 104:2 (2011), 109–135