Homogenization of a~thin plate reinforced with periodic families of rigid rods
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1127-1168
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotics of the solution to the elastic bending problem for a thin plate reinforced with several periodic families of closely spaced but disjoint rods are constructed and justified, the result of homogenization being substantially different from the case when the rods are welded together into a single periodic mesh. The
material in the rods is assumed to be appreciably more rigid than that in the plate. An averaged fourth-order differential operator is obtained from summing the nonelliptic operators generated by each of the families of the rods. This operator is shown to be elliptic if and only if the rods from at least two families are nonparallel. As a simplified example, the paper examines a similar stationary heat conduction problem.
Bibliography: 24 titles.
Keywords:
thin plate, homogenization, asymptotics, composite material.
@article{SM_2011_202_8_a2,
author = {S. A. Nazarov and G. H. Sweers and A. S. Slutskij},
title = {Homogenization of a~thin plate reinforced with periodic families of rigid rods},
journal = {Sbornik. Mathematics},
pages = {1127--1168},
publisher = {mathdoc},
volume = {202},
number = {8},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/}
}
TY - JOUR AU - S. A. Nazarov AU - G. H. Sweers AU - A. S. Slutskij TI - Homogenization of a~thin plate reinforced with periodic families of rigid rods JO - Sbornik. Mathematics PY - 2011 SP - 1127 EP - 1168 VL - 202 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/ LA - en ID - SM_2011_202_8_a2 ER -
S. A. Nazarov; G. H. Sweers; A. S. Slutskij. Homogenization of a~thin plate reinforced with periodic families of rigid rods. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1127-1168. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/