@article{SM_2011_202_8_a2,
author = {S. A. Nazarov and G. H. Sweers and A. S. Slutskij},
title = {Homogenization of a~thin plate reinforced with periodic families of rigid rods},
journal = {Sbornik. Mathematics},
pages = {1127--1168},
year = {2011},
volume = {202},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/}
}
TY - JOUR AU - S. A. Nazarov AU - G. H. Sweers AU - A. S. Slutskij TI - Homogenization of a thin plate reinforced with periodic families of rigid rods JO - Sbornik. Mathematics PY - 2011 SP - 1127 EP - 1168 VL - 202 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/ LA - en ID - SM_2011_202_8_a2 ER -
S. A. Nazarov; G. H. Sweers; A. S. Slutskij. Homogenization of a thin plate reinforced with periodic families of rigid rods. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1127-1168. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a2/
[1] S. A. Nazarov, G. H. Sweers, A. S. Slutskii, “The heat conductivity problem in a thin plate with contrasting fiber inclusions”, Vestnik St. Petersburg Univ. Math., 42:4 (2009), 284–292 | DOI | MR | Zbl
[2] S. G. Lekhnitskiǐ, Theory of elasticity of an anisotropic elastic body, Holden-Day, San Francisco, 1963 | MR | MR | Zbl | Zbl
[3] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2002
[4] S. A. Nazarov, “Asymptotic analysis of an arbitrary anisotropic plate of variable thickness (sloping shell)”, Sb. Math., 191:7 (2000), 1075–1106 | DOI | MR | Zbl
[5] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl
[6] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 | MR
[7] K. O. Friedrichs, “On the boundary-value problems of the theory of elasticity and Korn's inequality”, Ann. of Math. (2), 48 (1947), 441–471 | DOI | MR | Zbl
[8] P. P. Mosolov, V. P. Myasnikov, “A proof of Korn's inequality”, Soviet Math. Dokl., 12 (1971), 1618–1622 | MR | Zbl
[9] G. Duvaut, J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972 | MR | MR | Zbl | Zbl
[10] V. A. Kondrat'ev, O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl | Zbl
[11] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer–Verlag, New York, 1985 | MR | MR | Zbl | Zbl
[12] G. Fichera, Existence theorems in elasticity, Springer-Verlag, Berlin, 1972
[13] M. V. Kozlova, G. P. Panasenko, “Averaging of a three-dimensional problem of elasticity theory for an inhomogeneous rod”, U.S.S.R. Comput. Math. Math. Phys., 31:10 (1991), 128–131 | MR | Zbl | Zbl
[14] H. Le Dret, “Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero”, Asymptotic Anal., 10:4 (1995), 367–402 | MR | Zbl
[15] S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates”, J. Math. Sci. (New York), 97:4 (1999), 4245–4279 | MR | Zbl
[16] S. A. Nazarov, “Minimal conditions on the smoothness of data which preserve the accuracy of a one-dimensional model of rods”, J. Math. Sci. (New York), 101:2 (2000), 2975–2986 | MR | Zbl
[17] S. A. Nazarov, A. S. Slutskii, “One-dimensional equations of deformation of thin slightly curved rods. Asymptotical analysis and justification”, Izv. Math., 64:3 (2000), 531–562 | DOI | MR | Zbl
[18] A. Majd, “On the asymptotic analysis of a non-symmetric bar”, M2AN Math. Model. Numer. Anal., 34:5 (2000), 1069–1085 | DOI | MR | Zbl
[19] V. L. Berdichevsky, Variational principles of continuum mechanics, Interact. Mech. Math., Springer–Verlag, Berlin, 2009 | MR | MR | Zbl | Zbl
[20] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989 | MR | MR | Zbl | Zbl
[21] J. Sanchez Hubert, E. Sánchez-Palencia, Introduction aux Méthodes Asymptotiques et à l'Homogénéisation Application à la Mécanique des Milex Continues, Masson, Paris, 1992
[22] E. A. Akimova, S. A. Nazarov, G. A. Chechkin, “Asymptotics of the solution of the problem of deformation of an arbitrary locally periodic thin plate”, Trans. Mosc. Math. Soc., 2004, 1–29 | MR | Zbl
[23] S. A. Nazarov, “Korn inequalities for elastic junctions of massive bodies, thin plates, and rods”, Russian Math. Surveys, 63:1 (2008), 35–107 | DOI | MR | Zbl
[24] S. A. Nazarov, A. S. Slutskij, G. H. Sweers, “Korn's inequalities for a reinforced plate”, J. Elasticity, 104:2 (2011), 109–135