Mots-clés : correlation coefficients
@article{SM_2011_202_8_a1,
author = {A. G. Kachurovskii and V. V. Sedalishchev},
title = {Constants in estimates for the rates of convergence in von {Neumann's} and {Birkhoff's} ergodic theorems},
journal = {Sbornik. Mathematics},
pages = {1105--1125},
year = {2011},
volume = {202},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a1/}
}
TY - JOUR AU - A. G. Kachurovskii AU - V. V. Sedalishchev TI - Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems JO - Sbornik. Mathematics PY - 2011 SP - 1105 EP - 1125 VL - 202 IS - 8 UR - http://geodesic.mathdoc.fr/item/SM_2011_202_8_a1/ LA - en ID - SM_2011_202_8_a1 ER -
%0 Journal Article %A A. G. Kachurovskii %A V. V. Sedalishchev %T Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems %J Sbornik. Mathematics %D 2011 %P 1105-1125 %V 202 %N 8 %U http://geodesic.mathdoc.fr/item/SM_2011_202_8_a1/ %G en %F SM_2011_202_8_a1
A. G. Kachurovskii; V. V. Sedalishchev. Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1105-1125. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a1/
[1] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl
[2] A. G. Kachurovskii, “The rate of convergence in ergodic theorems”, Russian Math. Surveys, 51:4 (1996), 653–703 | DOI | MR | Zbl
[3] A. G. Kachurovskii, A. V. Reshetenko, “On the rate of convergence in von Neumann's ergodic theorem with continuous time”, Sb. Math., 201:4 (2010), 493–500 | DOI | MR | Zbl
[4] A. G. Kachurovskii, V. V. Sedalishchev, “On the constants in the estimates of the rate of convergence in von Neumann's ergodic theorem”, Math. Notes, 87:5–6 (2010), 720–727 | DOI | MR
[5] N. K. Bary, A treatise on trigonometric series, Macmillan, New York, 1964 | MR | MR | Zbl
[6] J. von Neumann, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. U.S.A., 18:1 (1932), 70–82 | DOI | Zbl
[7] I. A. Ibragimov, Yu. V. Linnik, Independent and stationary sequences of random variables, Grundlehren Math. Wiss., 245, Wolters-Noordhoff Publ., Groningen, 1971 | MR | MR | Zbl | Zbl
[8] Ya. G. Sinai, Dynamical systems II. Ergodic theory with applications to dynamical systems and statistical mechanics, Encyclopaedia Math. Sci., 2, Springer-Verlag, Berlin, 1989 | MR | MR | Zbl | Zbl
[9] I. Assani, M. Lin, “On the one-sided ergodic Hilbert transform”, Ergodic theory and related fields (Chapel Hill, NC, USA, 2004–2006), Contemp. Math., 430, Amer. Math. Soc., Providence, RI, 2007, 21–39 | MR | Zbl
[10] V. F. Gaposhkin, “Decrease rate of the probabilities of $\varepsilon$-deviations for the means of stationary processes”, Math. Notes, 64:3 (1998), 316–321 | DOI | MR | Zbl
[11] V. F. Gapoškin, “Convergence of series connected with stationary sequences”, Math. USSR-Izv., 9:6 (1975), 1297–1321 | DOI | MR | Zbl | Zbl
[12] V. P. Leonov, “On the dispersion of time-dependent means of a stationary stochastic process”, Theory Probab. Appl., 6 (1961), 87–93 | DOI | MR | Zbl
[13] R. E. Edwards, Fourier series. A modern introduction, v. 1, 2, Grad. Texts in Math., 64, 85, Springer-Verlag, New York–Heidelberg–Berlin, 1979, 1982 | MR | MR | MR | Zbl | Zbl
[14] A. N. Shiryaev, Probability, Grad. Texts in Math., 95, Springer-Verlag, New York, 1996 | MR | MR | Zbl | Zbl
[15] V. F. Gaposhkin, “Criteria for the strong law of large numbers for some classes of second-order stationary processes and homogeneous random fields”, Theory Probab. Appl., 22:2 (1978), 286–310 | DOI | MR | Zbl