Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1105-1125
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper investigates estimates which relate two equivalent phenomena: the power-type rate of convergence in von Neumann's ergodic theorem and the power-type singularity at zero (with the same exponent) exhibited by the spectral measure of the function being averaged with respect to the corresponding dynamical system. The same rate of convergence is also estimated in terms of the rate of decrease of the correlation coefficients. Also, constants are found in analogous estimates for the power-type convergence in Birkhoff's ergodic theorem. All the results have exact analogues for wide-sense stationary stochastic processes.
Bibliography: 15 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
rates of convergence in ergodic theorems, spectral measures, wide-sense stationary processes.
Mots-clés : correlation coefficients
                    
                  
                
                
                Mots-clés : correlation coefficients
@article{SM_2011_202_8_a1,
     author = {A. G. Kachurovskii and V. V. Sedalishchev},
     title = {Constants in estimates for the rates of convergence in von {Neumann's} and {Birkhoff's} ergodic theorems},
     journal = {Sbornik. Mathematics},
     pages = {1105--1125},
     publisher = {mathdoc},
     volume = {202},
     number = {8},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_8_a1/}
}
                      
                      
                    TY - JOUR AU - A. G. Kachurovskii AU - V. V. Sedalishchev TI - Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems JO - Sbornik. Mathematics PY - 2011 SP - 1105 EP - 1125 VL - 202 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_8_a1/ LA - en ID - SM_2011_202_8_a1 ER -
%0 Journal Article %A A. G. Kachurovskii %A V. V. Sedalishchev %T Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems %J Sbornik. Mathematics %D 2011 %P 1105-1125 %V 202 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2011_202_8_a1/ %G en %F SM_2011_202_8_a1
A. G. Kachurovskii; V. V. Sedalishchev. Constants in estimates for the rates of convergence in von Neumann's and Birkhoff's ergodic theorems. Sbornik. Mathematics, Tome 202 (2011) no. 8, pp. 1105-1125. http://geodesic.mathdoc.fr/item/SM_2011_202_8_a1/
