@article{SM_2011_202_7_a6,
author = {A. Kh. Khanmamedov},
title = {The inverse scattering problem for a~discrete {Sturm-Liouville} equation on the line},
journal = {Sbornik. Mathematics},
pages = {1071--1083},
year = {2011},
volume = {202},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a6/}
}
A. Kh. Khanmamedov. The inverse scattering problem for a discrete Sturm-Liouville equation on the line. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1071-1083. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a6/
[1] H. Flaschka, “On the Toda lattice. II. Inverse-scattering solution”, Progr. Theoret. Phys., 51:3 (1974), 703–716 | DOI | MR | Zbl
[2] G. Sh. Guseinov, Obratnye zadachi rasseyaniya dlya samosopryazhennykh raznostnykh operatorov vtorogo poryadka, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1976
[3] A. I. Aptekarev, E. M. Nikishin, “The scattering problem for a discrete Sturm–Liouville operator”, Math. USSR-Sb., 49:2 (1984), 325–355 | DOI | MR | Zbl | Zbl
[4] E. M. Nikishin, “Discrete Sturm–Liouville operators and some problems of function theory”, J. Math. Sci., 35:2 (1986), 2679–2744 | DOI | MR | Zbl | Zbl
[5] I. M. Guseinov, A. Kh. Khanmamedov, “The $t\to\infty$ asymptotic regime of the Cauchy problem solution for the Toda chain with threshold-type initial data”, Theoret. and Math. Phys., 119:3 (1999), 739–749 | DOI | MR | Zbl
[6] G. Teschl, Jacobi operators and completely integrable nonlinear lattices, Math. Surveys Monogr., 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[7] A. Kh. Khanmamedov, “Direct and inverse scattering problems for the perturbed Hill difference equation”, Sb. Math., 196:10 (2005), 1529–1552 | DOI | MR | Zbl
[8] I. Egorova, “The scattering problem for step-like Jacobi operator”, Matem. fiz., anal., geom., 9:2 (2002), 188–205 | MR | Zbl
[9] A. Boutet de Monvel, I. Egorova, G. Teschl, “Inverse scattering theory for one-dimensional Schrödinger operators with steplike finite-gap potentials”, J. Anal. Math., 106:1 (2008), 271–316 | DOI | MR | Zbl
[10] I. Egorova, J. Michor, G. Teschl, “Inverse scattering transform for the Toda hierarchy with steplike finite-gap backgrounds”, J. Math. Phys., 50:10 (2009) | DOI | MR | Zbl
[11] E. Korotyaev, A. Lantchenko, Periodic Jacobi operator with finitely supported perturbations, arXiv: 1006.1538
[12] S. P. Suetin, “Trace formulae for a class of Jacobi operators”, Sb. Math., 198:6 (2007), 857–885 | DOI | MR | Zbl
[13] S. P. Suetin, “Spectral properties of a class of discrete Sturm–Liouville operators”, Russian Math. Surveys, 61:2 (2006), 365–367 | DOI | MR | Zbl
[14] V. A. Kalyagin, A. A. Kononova, “On compact perturbations of the limit-periodic Jacobi operator”, Math. Notes, 86:6 (2009), 789–800 | DOI | MR | Zbl
[15] Yu. M. Berezans'kiǐ, Expansions in eigenfunctions of selfadjoint operators, Amer. Math. Soc., Providence, RI, 1968 | MR | MR | Zbl | Zbl
[16] M. Kudryavtsev, On an inverse problem for finite-difference operators of second order, arXiv: math.SP/0110276
[17] P. P. Kulish, “Inverse scattering problem for the Schroedinger equation on the axis”, Math. Notes, 4:6 (1968), 895–899 | DOI | MR | Zbl
[18] Ag. Kh. Khanmamedov, “Inverse scatering problem for the Schrödinger equation on the axis”, Abstracts of the Third Congress of the World Mathematical Society of Turkic Countries, Kazak Universiteti, Almaty, 2009, 115
[19] L. A. Lusternik, V. J. Sobolev, Elements of functional analysis, Hindustan Publ., Delhi, 1971 | MR | MR | Zbl | Zbl
[20] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publ., New York, 1965 | MR | MR | Zbl | Zbl
[21] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950 | MR | Zbl
[22] P. Koosis, Introduction to $H^p$ spaces with an appendix on Wolff's proof of the corona theorem, London Math. Soc. Lecture Note Ser., 40, Cambridge Univ. Press, Cambridge–New York, 1980 | MR | MR | Zbl | Zbl
[23] M. A. Neumark, Lineare Differentialoperatoren, Akademie-Verlag, Berlin, 1960 | MR | MR | Zbl