Curvature and Tachibana numbers
Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1059-1069

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to define the $r$th Tachibana number $t_r$ of an $n$-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing $r$-forms, for $r=1,2,\dots,n-1$. We also describe properties of these numbers, by analogy with properties of the Betti numbers $b_r$ of a compact oriented Riemannian manifold. Bibliography: 25 titles.
Keywords: compact Riemannian manifold, differential forms, elliptic operator
Mots-clés : scalar invariants.
@article{SM_2011_202_7_a5,
     author = {S. E. Stepanov},
     title = {Curvature and {Tachibana} numbers},
     journal = {Sbornik. Mathematics},
     pages = {1059--1069},
     publisher = {mathdoc},
     volume = {202},
     number = {7},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - Curvature and Tachibana numbers
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1059
EP  - 1069
VL  - 202
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/
LA  - en
ID  - SM_2011_202_7_a5
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T Curvature and Tachibana numbers
%J Sbornik. Mathematics
%D 2011
%P 1059-1069
%V 202
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/
%G en
%F SM_2011_202_7_a5
S. E. Stepanov. Curvature and Tachibana numbers. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1059-1069. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/