Curvature and Tachibana numbers
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1059-1069
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The aim of this paper is to define the $r$th Tachibana number $t_r$ of an $n$-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing $r$-forms, for $r=1,2,\dots,n-1$. We also describe properties of these numbers, by analogy with properties of the Betti numbers $b_r$ of a compact oriented Riemannian manifold.
Bibliography: 25 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
compact Riemannian manifold, differential forms, elliptic operator
Mots-clés : scalar invariants.
                    
                  
                
                
                Mots-clés : scalar invariants.
@article{SM_2011_202_7_a5,
     author = {S. E. Stepanov},
     title = {Curvature and {Tachibana} numbers},
     journal = {Sbornik. Mathematics},
     pages = {1059--1069},
     publisher = {mathdoc},
     volume = {202},
     number = {7},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/}
}
                      
                      
                    S. E. Stepanov. Curvature and Tachibana numbers. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1059-1069. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/
