Curvature and Tachibana numbers
Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1059-1069 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to define the $r$th Tachibana number $t_r$ of an $n$-dimensional compact oriented Riemannian manifold as the dimension of the space of conformally Killing $r$-forms, for $r=1,2,\dots,n-1$. We also describe properties of these numbers, by analogy with properties of the Betti numbers $b_r$ of a compact oriented Riemannian manifold. Bibliography: 25 titles.
Keywords: compact Riemannian manifold, differential forms, elliptic operator
Mots-clés : scalar invariants.
@article{SM_2011_202_7_a5,
     author = {S. E. Stepanov},
     title = {Curvature and {Tachibana} numbers},
     journal = {Sbornik. Mathematics},
     pages = {1059--1069},
     year = {2011},
     volume = {202},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - Curvature and Tachibana numbers
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1059
EP  - 1069
VL  - 202
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/
LA  - en
ID  - SM_2011_202_7_a5
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T Curvature and Tachibana numbers
%J Sbornik. Mathematics
%D 2011
%P 1059-1069
%V 202
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/
%G en
%F SM_2011_202_7_a5
S. E. Stepanov. Curvature and Tachibana numbers. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1059-1069. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a5/

[1] K. Yano, S. Bochner, Curvature and Betti numbers, Ann. of Math. Stud., 32, Princeton Univ. Press, Princeton, NJ, 1953 | MR | Zbl

[2] S. E. Stepanov, “On analogue of the Poincaré duality theorem for Betti Numbers”, Abstracts of the International Conference “Differential equations and topology” (Moscow, 2008), Moscow, 2008, 456–457

[3] Géometrié riemannienne en dimension 4, Seminaire Arthur Besse 1978/79, Textes Math., 3, CEDIC, Paris, 1981 | MR | MR | Zbl

[4] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb. (3), 10, Springer-Verlag, Berlin, 1987 | MR | MR | Zbl | Zbl

[5] D. V. Alekseev, A. M. Vinogradov, V. V. Lychagin, “Basic ideas and concepts of differential geometry”, Geometry, v. I, Encyclopaedia Math. Sci., 28, Springer-Verlag, Berlin, 1991, 1–264 | MR | MR | Zbl | Zbl

[6] S. E. Stepanov, “On conformal Killing 2-form of the electromagnetic field”, J. Geom. Phys., 33:3–4 (2000), 191–209 | DOI | MR | Zbl

[7] T. Kashiwada, “On conformal Killing tensor”, Natur. Sci. Rep. Ochanomizu Univ., 19:2 (1968), 67–74 | MR | Zbl

[8] Sh. Tachibana, “On conformal Killing tensor in a Riemannian space”, Tohoku Math. J. (2), 21:1 (1969), 56–64 | DOI | MR | Zbl

[9] U. Semmelmann, “Conformal Killing forms on Riemannian manifolds”, Math. Z., 245:3 (2003), 503–527 | DOI | MR | Zbl

[10] M. Kora, “On conformal Killing forms and the proper space of $\Delta $ for $p$-forms”, Math. J. Okayama Univ., 22:2 (1980), 195–204 | MR | Zbl

[11] S. E. Stepanov, “The Killing–Yano tensor”, Theoret. and Math. Phys., 134:3 (2003), 333–338 | DOI | MR | Zbl

[12] G. de Rham, Variétés différentiables, Hermann, Paris, 1955 | MR | Zbl

[13] P. Petersen, Riemannian geometry, Grad. Texts in Math., 171, Springer-Verlag, New York, 1998 | MR | Zbl

[14] S. E. Stepanov, “A new strong Laplacian on differential forms”, Math. Notes, 76:3 (2004), 420–425 | DOI | MR | Zbl

[15] Th. Branson, “Stein–Weiss operators and ellipticity”, J. Funct. Anal., 151:2 (1997), 334–383 | DOI | MR | Zbl

[16] S. E. Stepanov, “New theorem of duality and its applications”, Noveishie problemy teorii polya 1999–2000, Izd-vo KGU, Kazan, 2000, 373–376

[17] S. E. Stepanov, “Ob izomorfizme prostranstv konformno killingovykh form”, Diff. geom. mnogoobrazii figur, 31 (2000), 81–84 | MR | Zbl

[18] S. E. Stepanov, “Some conformal and projective scalar invariants of Riemannian manifolds”, Math. Notes, 80:6 (2006), 848–852 | DOI | MR | Zbl

[19] Sh. Tachibana, “On Killing tensors in a Riemannian space”, Tohoku Math. J. (2), 20:2 (1968), 257–264 | DOI | MR | Zbl

[20] S. E. Stepanov, V. M. Isaev, “Primery killingovoi i konformno killingovoi form”, Diff. geom. mnogoobrazii figur, 32 (2001), 52–57 | MR | Zbl

[21] J. Mikeš, “On existence of nontrivial global geodesic mappings of $n$-dimensional compact surfaces of revolution”, Differential geometry and its applications (Brno, Czechoslovakia, 1989), World Sci. Publ., Singapore, 1990, 129–137 | MR | Zbl

[22] V. Apostolov, D. M. J. Calderbank, P. Gauduchon, “Hamiltonian 2-forms in Kähler geometry. I. General theory”, J. Differential Geom., 73:3 (2006), 359–412 | MR | Zbl

[23] V. Apostolov, D. M. J. Calderbank, P. Gauduchon, “Hamiltonian 2-forms in Kähler geometry. II. Global classification”, J. Differential Geom., 68:2 (2004), 277–345 | MR | Zbl

[24] S. E. Stepanov, “On a generalization Kashiwada's theorem”, Webs and quasigroups, Tver State Univ. Press, Tver, 1999, 162–167 | MR | Zbl

[25] S. E. Stepanov, “The vector space of conformal Killing forms on a Riemannian manifold”, J. Math. Sci. (New York), 110:4 (2002), 2892–2906 | DOI | MR | Zbl