The relative isoperimetric inequality on a conformally parabolic manifold with boundary
Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1043-1058 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary noncompact $n$-dimensional Riemannian manifold with a boundary of conformally parabolic type it is proved that there exists a conformal change of metric such that a relative isoperimetric inequality of the same form as in the closed $n$-dimensional Euclidean half-space holds on the manifold with the new metric. This isoperimetric inequality is asymptotically sharp. Bibliography: 6 titles.
Keywords: Riemannian manifold, conformal type of a manifold, conformal capacity, conformal metrics, isoperimetric function.
@article{SM_2011_202_7_a4,
     author = {V. M. Kesel'man},
     title = {The relative isoperimetric inequality on a~conformally parabolic manifold with boundary},
     journal = {Sbornik. Mathematics},
     pages = {1043--1058},
     year = {2011},
     volume = {202},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a4/}
}
TY  - JOUR
AU  - V. M. Kesel'man
TI  - The relative isoperimetric inequality on a conformally parabolic manifold with boundary
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1043
EP  - 1058
VL  - 202
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_7_a4/
LA  - en
ID  - SM_2011_202_7_a4
ER  - 
%0 Journal Article
%A V. M. Kesel'man
%T The relative isoperimetric inequality on a conformally parabolic manifold with boundary
%J Sbornik. Mathematics
%D 2011
%P 1043-1058
%V 202
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2011_202_7_a4/
%G en
%F SM_2011_202_7_a4
V. M. Kesel'man. The relative isoperimetric inequality on a conformally parabolic manifold with boundary. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1043-1058. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a4/

[1] V. M. Kesel'man, “The relative isoperimetric inequality on a conformally parabolic manifold with boundary”, Russian Math. Surveys, 65:2 (2010), 384–385 | DOI | MR | Zbl

[2] V. M. Kesel'man, “The isoperimetric inequality on conformally parabolic manifolds”, Sb. Math., 200:1 (2009), 1–33 | DOI | MR | Zbl

[3] V. A. Zorich, “The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems”, Quasiconformal space mappings, Lecture Notes in Math., 1508, Springer-Verlag, Berlin, 1992, 132–148 | DOI | MR | Zbl

[4] D. Gromoll, W. Klingenberg, W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Math., 55, Springer-Verlag, Berlin–Heidelberg–New York, 1968 | DOI | MR | Zbl

[5] B. A. Dubrovin, A. T. Fomenko, S. P. Novikov, Modern geometry – methods and applications. Part I. The geometry of surfaces, transformation groups, and fields, Grad. Texts in Math., 93, Springer-Verlag, New York, 1992 | MR | MR | Zbl | Zbl

[6] M. M. Postnikov, Geometry VI. Riemannian geometry, Encyclopaedia Math. Sci., 91, Springer-Verlag, Berlin, 2001 | MR | MR | Zbl