Classification of almost toric singularities of Lagrangian foliations
Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1021-1042 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The topological classification is given of almost toric singularities of integrable Hamiltonian systems with a large number of degrees of freedom, that is, of nondegenerate singularities without hyperbolic components. A descriptive geometric model is constructed, which makes it possible to perform effective calculations. Bibliography: 10 titles.
Keywords: Hamiltonian systems, singularities, integrability, topological invariants, Lagrangian foliations.
@article{SM_2011_202_7_a3,
     author = {A. M. Izosimov},
     title = {Classification of almost toric singularities of {Lagrangian} foliations},
     journal = {Sbornik. Mathematics},
     pages = {1021--1042},
     year = {2011},
     volume = {202},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a3/}
}
TY  - JOUR
AU  - A. M. Izosimov
TI  - Classification of almost toric singularities of Lagrangian foliations
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1021
EP  - 1042
VL  - 202
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_7_a3/
LA  - en
ID  - SM_2011_202_7_a3
ER  - 
%0 Journal Article
%A A. M. Izosimov
%T Classification of almost toric singularities of Lagrangian foliations
%J Sbornik. Mathematics
%D 2011
%P 1021-1042
%V 202
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2011_202_7_a3/
%G en
%F SM_2011_202_7_a3
A. M. Izosimov. Classification of almost toric singularities of Lagrangian foliations. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1021-1042. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a3/

[1] M. Symington, “Four dimensions from two in symplectic topology”, Topology and geometry of manifolds (Athens, GA, USA, 2001), Proc. Sympos. Pure Math., 71, Amer. Math. Soc., Providence, RI, 2003, 153–208 | MR | Zbl

[2] N. C. Leung, M. Symington, “Almost toric symplectic four-manifolds”, J. Symplectic Geom., 8:2 (2010), 143–187 ; arXiv: math.SG/0312165 | MR | Zbl

[3] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Chapman Hall, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[4] L. H. Eliasson, “Normal forms for Hamiltonian systems with Poisson commuting integrals – elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35 | DOI | MR | Zbl

[5] N. T. Zung, “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215 | MR | Zbl

[6] V. S. Matveev, “Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type”, Sb. Math., 187:4 (1996), 495–524 | DOI | MR | Zbl

[7] M. Zou, “Monodromy in two degrees of freedom integrable systems”, J. Geom. Phys., 10:1 (1992), 37–45 | DOI | MR | Zbl

[8] N. T. Zung, “A note on focus-focus singularities”, Differential Geom. Appl., 7:2 (1997), 123–130 | DOI | MR | Zbl

[9] A. M. Izosimov, Kriterii gladkoi ekvivalentnosti osobennostei tipa fokus-fokus, diplomnaya rabota, Mekhaniko-matematicheskii fakultet MGU im. M. V. Lomonosova, M., 2008

[10] N. T. Zung, “Another note on focus-focus singularities”, Lett. Math. Phys., 60:1 (2002), 87–99 | DOI | MR | Zbl