@article{SM_2011_202_7_a3,
author = {A. M. Izosimov},
title = {Classification of almost toric singularities of {Lagrangian} foliations},
journal = {Sbornik. Mathematics},
pages = {1021--1042},
year = {2011},
volume = {202},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a3/}
}
A. M. Izosimov. Classification of almost toric singularities of Lagrangian foliations. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1021-1042. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a3/
[1] M. Symington, “Four dimensions from two in symplectic topology”, Topology and geometry of manifolds (Athens, GA, USA, 2001), Proc. Sympos. Pure Math., 71, Amer. Math. Soc., Providence, RI, 2003, 153–208 | MR | Zbl
[2] N. C. Leung, M. Symington, “Almost toric symplectic four-manifolds”, J. Symplectic Geom., 8:2 (2010), 143–187 ; arXiv: math.SG/0312165 | MR | Zbl
[3] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Chapman Hall, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl
[4] L. H. Eliasson, “Normal forms for Hamiltonian systems with Poisson commuting integrals – elliptic case”, Comment. Math. Helv., 65:1 (1990), 4–35 | DOI | MR | Zbl
[5] N. T. Zung, “Symplectic topology of integrable Hamiltonian systems. I: Arnold–Liouville with singularities”, Compositio Math., 101:2 (1996), 179–215 | MR | Zbl
[6] V. S. Matveev, “Integrable Hamiltonian system with two degrees of freedom. The topological structure of saturated neighbourhoods of points of focus-focus and saddle-saddle type”, Sb. Math., 187:4 (1996), 495–524 | DOI | MR | Zbl
[7] M. Zou, “Monodromy in two degrees of freedom integrable systems”, J. Geom. Phys., 10:1 (1992), 37–45 | DOI | MR | Zbl
[8] N. T. Zung, “A note on focus-focus singularities”, Differential Geom. Appl., 7:2 (1997), 123–130 | DOI | MR | Zbl
[9] A. M. Izosimov, Kriterii gladkoi ekvivalentnosti osobennostei tipa fokus-fokus, diplomnaya rabota, Mekhaniko-matematicheskii fakultet MGU im. M. V. Lomonosova, M., 2008
[10] N. T. Zung, “Another note on focus-focus singularities”, Lett. Math. Phys., 60:1 (2002), 87–99 | DOI | MR | Zbl