Solvability of the Dirichlet problem for a general second-order elliptic equation
Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1001-1020 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with studying the solvability of the Dirichlet problem for the second-order elliptic equation \begin{gather*} \begin{split} & -\operatorname{div} (A(x)\nabla u)+(\overline b(x),\nabla u)-\operatorname{div} (\overline c(x)u)+d(x)u \\ &\qquad=f(x)-\operatorname{div} F(x), \qquad x\in Q, \end{split} \\ u\big|_{\partial Q}=u_0, \end{gather*} in a bounded domain $Q\subset R_n$, $n\geqslant 2$, with $C^1$-smooth boundary and boundary condition $u_0\in L_2(\partial Q)$. Conditions for the existence of an $(n-1)$-dimensionally continuous solution are obtained, the resulting solvability condition is shown to be similar in form to the solvability condition in the conventional generalized setting (in $W_2^1(Q)$). In particular, the problem is shown to have an $(n-1)$-dimensionally continuous solution for all $u_0\in L_2(\partial Q)$ and all $f$ and $F$ from the appropriate function spaces, provided that the homogeneous problem (with zero boundary conditions and zero right-hand side) has no nonzero solutions in $W_2^1(Q)$. Bibliography: 14 titles.
Keywords: Dirichlet problem, solvability of the Dirichlet problem, second-order elliptic equation, $(n-1)$-dimensionally continuous solution.
@article{SM_2011_202_7_a2,
     author = {V. Zh. Dumanyan},
     title = {Solvability of the {Dirichlet} problem for a~general second-order elliptic equation},
     journal = {Sbornik. Mathematics},
     pages = {1001--1020},
     year = {2011},
     volume = {202},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a2/}
}
TY  - JOUR
AU  - V. Zh. Dumanyan
TI  - Solvability of the Dirichlet problem for a general second-order elliptic equation
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1001
EP  - 1020
VL  - 202
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_7_a2/
LA  - en
ID  - SM_2011_202_7_a2
ER  - 
%0 Journal Article
%A V. Zh. Dumanyan
%T Solvability of the Dirichlet problem for a general second-order elliptic equation
%J Sbornik. Mathematics
%D 2011
%P 1001-1020
%V 202
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2011_202_7_a2/
%G en
%F SM_2011_202_7_a2
V. Zh. Dumanyan. Solvability of the Dirichlet problem for a general second-order elliptic equation. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 1001-1020. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a2/

[1] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[2] A. K. Gushchin, V. P. Mikhaǐlov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[3] V. P. Mikhajlov, “Dirichlet's problem for a second-order elliptic equation”, Math. USSR-Sb., 12:10 (1977), 1320–1329 | MR | Zbl | Zbl

[4] V. P. Mikhailov, “O granichnykh svoistvakh reshenii ellipticheskikh uravnenii”, Matem. zametki, 27:1 (1980), 137–145 | MR | Zbl

[5] V. P. Mikhajlov, Partial differential equations, Mir, Moscow, 1978 | MR | MR | Zbl | Zbl

[6] A. K. Guschin, V. P. Mikhailov, “O granichnykh znacheniyakh reshenii ellipticheskikh uravnenii”, Obobschennye funktsii i ikh primeneniya v matematicheskoi fizike (Moskva, 1980), VTs AN SSSR, M., 1981, 189–205 | MR | Zbl

[7] O. I. Bogoyavlenskij, V. S. Vladimirov, I. V. Volovich, A. K. Gushchin, Yu. N. Drozhzhinov, V. V. Zharinov, V. P. Mikhajlov, “Boundary value problems of mathematical physics”, Proc. Steklov Inst. Math., 175 (1988), 65–105 | MR | Zbl | Zbl

[8] I. M. Petrushko, “On boundary values of solutions of elliptic equations in domains with Lyapunov boundary”, Math. USSR-Sb., 47:1 (1984), 43–72 | DOI | MR | Zbl | Zbl

[9] I. M. Petrushko, “On boundary values in $\mathscr L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl | Zbl

[10] V. Zh. Dumanyan, “On the boundary values of the solution of the Dirichlet problem for a second-order elliptic equation”, J. Contemp. Math. Anal., 45:1 (2010), 26–42 | DOI | MR

[11] V. Zh. Dumanyan, “Near-boundary behavior of the solution to the Dirichlet problem for an elliptic second-order equation”, Dokl. Math., 66:2 (2002), 257–259 | MR | Zbl

[12] V. G. Maz'ya, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | MR | MR | Zbl | Zbl

[13] V. P. Mikhailov, A. K. Guschin, “Dopolnitelnye glavy kursa “Uravneniya matematicheskoi fiziki””, Lekts. kursy NOTs, no. 7, MIAN, M., 2007, 3–144 | DOI

[14] V. Zh. Dumanyan, “O sobstvennykh podprostranstvakh vpolne nepreryvnogo operatora v gilbertovykh prostranstvakh”, Matematika v vysshei shkole, Sbornik nauchnykh i metodicheskikh statei, 6, no. 2, Izd-vo GIUA “Chartaraget”, Erevan, 2010, 42–44