One-parameter semigroups of analytic functions, fixed points and the Koenigs function
Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 971-1000 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analogues of the Berkson-Porta formula for the infinitesimal generator of a one-parameter semigroup of holomorphic maps of the unit disc into itself are obtained in the case when, along with a Denjoy-Wolff point, there also exist other fixed points. With each one-parameter semigroup a so-called Koenigs function is associated, which is a solution, common for all elements of the one-parameter semigroup, of a certain functional equation (Schröder's equation in the case of an interior Denjoy-Wolff point and Abel's equation in the case of a boundary Denjoy-Wolff point). A parametric representation for classes of Koenigs functions that takes account of the Denjoy-Wolff point and other fixed points of the maps in the one-parameter semigroup is presented. Bibliography: 19 titles.
Keywords: one-parameter semigroup, infinitesimal generator, fixed points, fractional iterates, Koenigs function.
@article{SM_2011_202_7_a1,
     author = {V. V. Goryainov and O. S. Kudryavtseva},
     title = {One-parameter semigroups of analytic functions, fixed points and the {Koenigs} function},
     journal = {Sbornik. Mathematics},
     pages = {971--1000},
     year = {2011},
     volume = {202},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a1/}
}
TY  - JOUR
AU  - V. V. Goryainov
AU  - O. S. Kudryavtseva
TI  - One-parameter semigroups of analytic functions, fixed points and the Koenigs function
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 971
EP  - 1000
VL  - 202
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_7_a1/
LA  - en
ID  - SM_2011_202_7_a1
ER  - 
%0 Journal Article
%A V. V. Goryainov
%A O. S. Kudryavtseva
%T One-parameter semigroups of analytic functions, fixed points and the Koenigs function
%J Sbornik. Mathematics
%D 2011
%P 971-1000
%V 202
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2011_202_7_a1/
%G en
%F SM_2011_202_7_a1
V. V. Goryainov; O. S. Kudryavtseva. One-parameter semigroups of analytic functions, fixed points and the Koenigs function. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 971-1000. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a1/

[1] E. Schröder, “Ueber iterirte Functionen”, Math. Ann., 3:2 (1871), 296–322 | DOI | MR | Zbl

[2] G. Koenigs, “Recherches sur les intégrales de certaines équations fonctionnelles”, Ann. Sci. École Norm. Sup. (3), 1 (1884), 3–41 | MR | Zbl

[3] E. Berkson, H. Porta, “Semigroups of analytic functions and composition operators”, Michigan Math. J., 25:1 (1978), 101–115 | DOI | MR | Zbl

[4] V. V. Goryainov, “Odnoparametricheskie polugruppy analiticheskikh funktsii i kompozitsionnyi analog bezgranichnoi delimosti”, Tr. IPMM NAN Ukrainy, 5 (2000), 44–57 | MR | Zbl

[5] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl

[6] G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954 | MR | Zbl

[7] T. E. Harris, The theory of branching processes, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | Zbl

[8] M. D. Contreras, S. Díaz-Madrigal, Ch. Pommerenke, “Fixed points and boundary behaviour of the Koenigs function”, Ann. Acad. Sci. Fenn. Math., 29:2 (2004), 471–488 | MR | Zbl

[9] V. V. Goryajnov, “Fractional iterates of functions analytic in the unit disk, with given fixed points”, Math. USSR-Sb., 74:1 (1993), 29–46 | DOI | MR | Zbl | Zbl

[10] L. V. Ahlfors, Conformal invariants. Topics in geometric function theory, McGraw-Hill, New York, 1973 | MR | Zbl

[11] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl

[12] M. Kuczma, Functional equations in a single variable, Polish Scientific Publ., Warszawa, 1968 | MR | Zbl

[13] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York–Berlin, 1983 | MR | Zbl

[14] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl

[15] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl

[16] I. N. Baker, Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. II”, J. London Math. Soc. (2), 20 (1979), 255–258 | DOI | MR | Zbl

[17] V. V. Goryainov, “Koenigs function and fractional iterates of probability generating functions”, Sb. Math., 193:7 (2002), 1009–1025 | DOI | MR | Zbl

[18] U. Franz, N. Muraki, “Markov property of monotone Lévy processes”, Infinite dimensional harmonic analysis. III (University of Tübingen, Tübingen, Germany, 2003), World Scientific, Hackensack, NJ, 2005, 37–57 | MR | Zbl

[19] J. H. Shapiro, Composition operators and classical function theory, Universitext Tracts Math., Springer-Verlag, New York, 1993 | MR | Zbl