@article{SM_2011_202_7_a1,
author = {V. V. Goryainov and O. S. Kudryavtseva},
title = {One-parameter semigroups of analytic functions, fixed points and the {Koenigs} function},
journal = {Sbornik. Mathematics},
pages = {971--1000},
year = {2011},
volume = {202},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a1/}
}
TY - JOUR AU - V. V. Goryainov AU - O. S. Kudryavtseva TI - One-parameter semigroups of analytic functions, fixed points and the Koenigs function JO - Sbornik. Mathematics PY - 2011 SP - 971 EP - 1000 VL - 202 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2011_202_7_a1/ LA - en ID - SM_2011_202_7_a1 ER -
V. V. Goryainov; O. S. Kudryavtseva. One-parameter semigroups of analytic functions, fixed points and the Koenigs function. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 971-1000. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a1/
[1] E. Schröder, “Ueber iterirte Functionen”, Math. Ann., 3:2 (1871), 296–322 | DOI | MR | Zbl
[2] G. Koenigs, “Recherches sur les intégrales de certaines équations fonctionnelles”, Ann. Sci. École Norm. Sup. (3), 1 (1884), 3–41 | MR | Zbl
[3] E. Berkson, H. Porta, “Semigroups of analytic functions and composition operators”, Michigan Math. J., 25:1 (1978), 101–115 | DOI | MR | Zbl
[4] V. V. Goryainov, “Odnoparametricheskie polugruppy analiticheskikh funktsii i kompozitsionnyi analog bezgranichnoi delimosti”, Tr. IPMM NAN Ukrainy, 5 (2000), 44–57 | MR | Zbl
[5] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl
[6] G. Valiron, Fonctions analytiques, Presses Universitaires de France, Paris, 1954 | MR | Zbl
[7] T. E. Harris, The theory of branching processes, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963 | MR | Zbl
[8] M. D. Contreras, S. Díaz-Madrigal, Ch. Pommerenke, “Fixed points and boundary behaviour of the Koenigs function”, Ann. Acad. Sci. Fenn. Math., 29:2 (2004), 471–488 | MR | Zbl
[9] V. V. Goryajnov, “Fractional iterates of functions analytic in the unit disk, with given fixed points”, Math. USSR-Sb., 74:1 (1993), 29–46 | DOI | MR | Zbl | Zbl
[10] L. V. Ahlfors, Conformal invariants. Topics in geometric function theory, McGraw-Hill, New York, 1973 | MR | Zbl
[11] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl
[12] M. Kuczma, Functional equations in a single variable, Polish Scientific Publ., Warszawa, 1968 | MR | Zbl
[13] P. L. Duren, Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York–Berlin, 1983 | MR | Zbl
[14] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969 | MR | MR | Zbl | Zbl
[15] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl
[16] I. N. Baker, Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. II”, J. London Math. Soc. (2), 20 (1979), 255–258 | DOI | MR | Zbl
[17] V. V. Goryainov, “Koenigs function and fractional iterates of probability generating functions”, Sb. Math., 193:7 (2002), 1009–1025 | DOI | MR | Zbl
[18] U. Franz, N. Muraki, “Markov property of monotone Lévy processes”, Infinite dimensional harmonic analysis. III (University of Tübingen, Tübingen, Germany, 2003), World Scientific, Hackensack, NJ, 2005, 37–57 | MR | Zbl
[19] J. H. Shapiro, Composition operators and classical function theory, Universitext Tracts Math., Springer-Verlag, New York, 1993 | MR | Zbl