Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials
Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 935-970 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main result of the paper is the statement that the ‘smooth’ measure of Masur and Veech is the unique measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials. The proof is based on the symbolic representation of the flow in Veech's space of zippered rectangles. Bibliography: 29 titles.
Keywords: Rauzy induction, symbolic dynamics, Markov shift, suspension flow.
Mots-clés : moduli space
@article{SM_2011_202_7_a0,
     author = {A. I. Bufetov and B. M. Gurevich},
     title = {Existence and uniqueness of the measure of maximal entropy for the {Teichm\"uller} flow on the moduli space of {Abelian} differentials},
     journal = {Sbornik. Mathematics},
     pages = {935--970},
     year = {2011},
     volume = {202},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a0/}
}
TY  - JOUR
AU  - A. I. Bufetov
AU  - B. M. Gurevich
TI  - Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 935
EP  - 970
VL  - 202
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_7_a0/
LA  - en
ID  - SM_2011_202_7_a0
ER  - 
%0 Journal Article
%A A. I. Bufetov
%A B. M. Gurevich
%T Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials
%J Sbornik. Mathematics
%D 2011
%P 935-970
%V 202
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2011_202_7_a0/
%G en
%F SM_2011_202_7_a0
A. I. Bufetov; B. M. Gurevich. Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 935-970. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a0/

[1] H. Masur, “Interval exchange transformations and measured foliations”, Ann. of Math. (2), 115:1 (1982), 169–200 | DOI | MR | Zbl

[2] W. A. Veech, “Gauss measures for transformations on the space of interval exchange maps”, Ann. of Math. (2), 115:2 (1982), 201–242 | DOI | MR | Zbl

[3] M. Konstsevich, A. Zorich, “Connected components of the moduli spaces of Abelian differentials with prescribed singularities”, Invent. Math., 153:3 (2003), 631–678 | DOI | MR | Zbl

[4] J. Hubbard, H. Masur, “Quadratic differentials and foliations”, Acta Math., 142:1 (1979), 221–274 | DOI | MR | Zbl

[5] W. A. Veech, “The Teichmüller geodesic flow”, Ann. of Math. (2), 124:3 (1986), 441–530 | DOI | MR | Zbl

[6] M. Kontsevich, “Lyapunov exponents and Hodge theory”, The mathematical beauty of physics (Saclay, France, 1996), Adv. Ser. Math. Phys., 24, World Scientific, Singapore–River Edge, NJ, 1997, 318–332 | MR | Zbl

[7] B. M. Gurevich, S. V. Savchenko, “Thermodynamic formalism for countable symbolic Markov chains”, Russian Math. Surveys, 53:2 (1998), 245–344 | DOI | MR | Zbl

[8] S. V. Savchenko, “Special flows constructed from countable topological Markov chains”, Funct. Anal. Appl., 32:1 (1998), 32–41 | DOI | MR | Zbl

[9] O. M. Sarig, “Thermodynamic formalism for countable Markov shifts”, Ergodic Theory Dynam. Systems, 19:6 (1999), 1565–1593 | DOI | MR | Zbl

[10] R. D. Mauldin, M. Urbański, “Gibbs states on the symbolic space over an infinite alphabet”, Israel J. Math., 125:1 (2001), 93–130 | DOI | MR | Zbl

[11] L. Barreira, G. Iommi, “Suspension flows over countable Markov shifts”, J. Stat. Phys., 124:1 (2006), 207–230 | DOI | MR | Zbl

[12] J. Buzzi, O. Sarig, “Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps”, Ergodic Theory Dynam. Systems, 23:5 (2003), 1383–1400 | DOI | MR | Zbl

[13] B. M. Gurevich, S. R. Katok, “Arithmetic coding and entropy for the positive geodesic flow on the modular surface”, Mosc. Math. J., 1:4 (2001), 569–582 | MR | Zbl

[14] G. Forni, “Deviation of ergodic averages for area-preserving flows on surfaces of higher genus”, Ann. of Math. (2), 155:2 (2000), 1–103 | DOI | MR | Zbl

[15] G. A. Margulis, On some aspects of the theory of Anosov systems, Springer Monogr. Math., Springer-Verlag, Berlin, 2004 | MR | Zbl

[16] A. I. Bufetov, B. M. Gurevich, “On the measure with maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials”, Funct. Anal. Appl., 42:3 (2008), 224–226 | DOI | MR | Zbl

[17] R. Bowen, “Topological entropy for noncompact sets”, Trans. Amer. Math. Soc., 184 (1973), 125–136 | DOI | MR | Zbl

[18] B. M. Gurevich, “A variational characterization of one-dimensional countable state Gibbs random fields”, Z. Wahrsch. Verw. Gebiete, 68:2 (1984), 205–242 | DOI | MR | Zbl

[19] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[20] B. M. Gurevich, “Shift entropy and Markov measures in the path space of a denumerable graph”, Soviet Math. Dokl., 11 (1970), 744–747 | MR | Zbl

[21] V. A. Rokhlin, “Izbrannye voprosy metricheskoi teorii dinamicheskikh sistem”, UMN, 4:2 (1949), 57–128 | MR | Zbl

[22] V. A. Rokhlin, “Lectures on the entropy theory of measure-preserving transformations”, Russian Math. Surveys, 22:5 (1967), 1–52 | DOI | MR | Zbl

[23] G. Rauzy, “Échanges d'intervalles et transformations induites”, Acta Arith., 34:4 (1979), 315–328 | MR | Zbl

[24] A. Zorich, “Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents”, Ann. Inst. Fourier (Grenoble), 46:2 (1996), 325–370 | MR | Zbl

[25] M. Viana, Stochastic dynamics of deterministic systems, Brazilian Colloquium of Mathematics, IMPA, Rio de Janeiro, 1997

[26] A. I. Bufetov, “Decay of correlations for the Rauzy–Veech–Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of Abelian differentials”, J. Amer. Math. Soc., 19:3 (2006), 579–623 | DOI | MR | Zbl

[27] M. Viana, “Dynamics of interval exchange maps and Teichmüller flows”, Lecture notes of graduate courses taught at IMPA in 2005 and 2007, IMPA, Rio de Janeiro, 2008

[28] L. M. Abramov, V. A. Rokhlin, “The entropy of a skew product of measure-preserving transformations”, Amer. Math. Soc. Transl. II, 48 (1965), 255–265 | MR | Zbl

[29] A. Zorich, “Flat surfaces”, Frontiers in number theory, physics, and geometry (Les Houches, France, 2003), v. I, Springer-Verlag, Berlin, 2006, 437–583 | DOI | MR | Zbl