Existence and uniqueness of the measure of maximal entropy for the Teichm\"uller flow on the moduli space of Abelian differentials
Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 935-970

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is the statement that the ‘smooth’ measure of Masur and Veech is the unique measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials. The proof is based on the symbolic representation of the flow in Veech's space of zippered rectangles. Bibliography: 29 titles.
Keywords: Rauzy induction, symbolic dynamics, Markov shift, suspension flow.
Mots-clés : moduli space
@article{SM_2011_202_7_a0,
     author = {A. I. Bufetov and B. M. Gurevich},
     title = {Existence and uniqueness of the measure of maximal entropy for the {Teichm\"uller} flow on the moduli space of {Abelian} differentials},
     journal = {Sbornik. Mathematics},
     pages = {935--970},
     publisher = {mathdoc},
     volume = {202},
     number = {7},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_7_a0/}
}
TY  - JOUR
AU  - A. I. Bufetov
AU  - B. M. Gurevich
TI  - Existence and uniqueness of the measure of maximal entropy for the Teichm\"uller flow on the moduli space of Abelian differentials
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 935
EP  - 970
VL  - 202
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_7_a0/
LA  - en
ID  - SM_2011_202_7_a0
ER  - 
%0 Journal Article
%A A. I. Bufetov
%A B. M. Gurevich
%T Existence and uniqueness of the measure of maximal entropy for the Teichm\"uller flow on the moduli space of Abelian differentials
%J Sbornik. Mathematics
%D 2011
%P 935-970
%V 202
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_7_a0/
%G en
%F SM_2011_202_7_a0
A. I. Bufetov; B. M. Gurevich. Existence and uniqueness of the measure of maximal entropy for the Teichm\"uller flow on the moduli space of Abelian differentials. Sbornik. Mathematics, Tome 202 (2011) no. 7, pp. 935-970. http://geodesic.mathdoc.fr/item/SM_2011_202_7_a0/