Approximative compactness and nonuniqueness in variational problems, and applications to differential equations
Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 909-934 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is concerned with the study of sets which are approximatively compact with respect to a family of functionals obtained by subtracting affine functionals from some fixed base functional. Nonconvexity of the base functional is shown to imply the minimum in a variational problem with some modified functional is not unique. The results obtained are applied to a specific equation involving the $q$-Laplacian. Bibliography: 7 titles.
Keywords: approximative compactness, variational problem, nonlinear differential equation.
@article{SM_2011_202_6_a5,
     author = {I. G. Tsar'kov},
     title = {Approximative compactness and nonuniqueness in variational problems, and applications to differential equations},
     journal = {Sbornik. Mathematics},
     pages = {909--934},
     year = {2011},
     volume = {202},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a5/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Approximative compactness and nonuniqueness in variational problems, and applications to differential equations
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 909
EP  - 934
VL  - 202
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_6_a5/
LA  - en
ID  - SM_2011_202_6_a5
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Approximative compactness and nonuniqueness in variational problems, and applications to differential equations
%J Sbornik. Mathematics
%D 2011
%P 909-934
%V 202
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2011_202_6_a5/
%G en
%F SM_2011_202_6_a5
I. G. Tsar'kov. Approximative compactness and nonuniqueness in variational problems, and applications to differential equations. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 909-934. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a5/

[1] L. V. Kantorovich, G. P. Akilov, Functional analysis, Pergamon Press, Oxford, 1982 | MR | MR | Zbl | Zbl

[2] J. L. Kelley, General topology, Springer-Verlag, New York–Heidelberg–Berlin, 1975 | MR | MR | Zbl | Zbl

[3] K. Fan, “Fixed-point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. U. S. A., 38 (1952), 121–126 | DOI | MR | Zbl

[4] V. I. Berdyshev, “Nepreryvnost operatora metricheskogo proektirovaniya i ego obobschenii”, Konstruktivnaya teoriya funktsii 77, Izd-vo AN Bolgarii, Sofiya, 1980, 29–34

[5] I. G. Tsar'kov, “Compact and weakly compact Tchebycheff sets in normed linear spaces”, Proc. Steklov Inst. Math., 189 (1990), 199–215 | MR | Zbl | Zbl

[6] N. Dunford, J. T. Schwartz, Linear operators, Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl

[7] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and quasilinear elliptic equations, Math. Sci. Engrg., 46, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl