Mots-clés : Riemann invariants, Riemann quasi-invariants, gradient catastrophe
@article{SM_2011_202_6_a4,
author = {S. I. Pokhozhaev},
title = {Riemann quasi-invariants},
journal = {Sbornik. Mathematics},
pages = {887--907},
year = {2011},
volume = {202},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a4/}
}
S. I. Pokhozhaev. Riemann quasi-invariants. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 887-907. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a4/
[1] B. Riman, “O rasprostranenii ploskikh voln konechnoi amplitudy”, Sobranie sochinenii, Gostekhizdat, M.-L., 1948, 376–395
[2] P. D. Lax, Hyperbolic partial differential equations, Courant Lect. Notes Math., 14, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl
[3] B. L. Rozhdestvenskij, N. N. Yanenko, Systems of quasilinear equations and their applications to gas dynamics, Transl. Math. Monogr., 55, Amer. Math. Soc., Providence, RI, 1983 | MR | MR | Zbl | Zbl
[4] F. John, “Formation of singularities in one-dimensional nonlinear wave propagation”, Comm. Pure Appl. Math., 27:3 (1974), 377–405 | DOI | MR | Zbl
[5] B. L. Rozhdestvenskii, A. D. Sidorenko, “Impossibility of the “gradient catastrophe” for slightly non-linear systems”, U.S.S.R. Comput. Math. Math. Phys., 7:5 (1967), 282–287 | DOI | MR | Zbl
[6] C. M. Dafermos, “Hyperbolic conservation laws with involutions and contingent entropies”, Recent advances in nonlinear partial differential equations and applications (Toledo, Spain, 2006), Proc. Sympos. Appl. Math., 65, Amer. Math. Soc., Providence, RI, 2007, 193–217 | MR | Zbl
[7] Ch. Zhu, “Global smooth solution of the nonisentropic gas dynamics system”, Proc. Roy. Soc. Edinburgh Sect. A, 126:4 (1996), 769–775 | MR | Zbl
[8] L. Lin, H. Liu, T. Yang, “Existence of globally bounded continuous solutions for nonisentropic gas dynamics equations”, J. Math. Anal. Appl., 209:2 (1997), 492–506 | DOI | MR | Zbl
[9] L. Lin, S. Vong, “A note on the existence and nonexistence of globally bounded classical solutions for nonisentropic gas dynamics”, Acta Math. Sci. Ser. B Engl. Ed., 26:3 (2006), 537–540 | DOI | MR | Zbl
[10] S. I. Pokhozhaev, “Ob uravneniyakh neizoentropicheskogo dvizheniya gazov”, Tr. MEI, 357 (1978), 81–87 | MR | Zbl
[11] S. I. Pokhozhaev, “Voprosy otsutstviya reshenii nelineinykh kraevykh zadach”, Trudy Vsesoyuznoi konferentsii po uravneniyam s chastnymi proizvodnymi, Izd-vo Mosk. un-ta, M., 1978, 200–203
[12] R. Courant, P. Lax, “On nonlinear partial differential equations with two independent variables”, Comm. Pure Appl. Math., 2:2–3 (1949), 255–273 | DOI | MR | Zbl
[13] R. Courant, K. O. Friedrichs, Supersonic flow and shock waves, Interscience Publ., New York, 1948 | MR | Zbl
[14] P. D. Lax, “Hyperbolic systems of conservation laws. II”, Comm. Pure Appl. Math., 10:4 (1957), 537–566 | DOI | MR | Zbl
[15] P. D. Lax, “Development of singularities of solutions of nonlinear hyperbolic partial differential equations”, J. Mathematical Phys., 5:5 (1964), 611–613 | DOI | MR | Zbl
[16] J. L. Johnson, “Global continuous solutions of hyperbolic systems of quasi-linear equations”, Bull. Amer. Math. Soc., 73:5 (1967), 639–641 | DOI | MR | Zbl