The theory of relaxation oscillations for Hutchinson's equation
Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 829-858 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Hutchinson's equation is a scalar equation with time delay which is well known in ecology. In this paper a complete asymptotic representation is constructed for a stable relaxation cycle of this equation, in the form of series in integer powers of a certain small parameter. The techniques of asymptotic integration developed on the way are then applied to analyse the question of attractors for a system of circularly interrelated Hutchinson equations. Bibliography: 8 titles.
Keywords: delay system, asymptotic behaviour, stability.
Mots-clés : relaxation oscillations
@article{SM_2011_202_6_a2,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {The theory of relaxation oscillations for {Hutchinson's} equation},
     journal = {Sbornik. Mathematics},
     pages = {829--858},
     year = {2011},
     volume = {202},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a2/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - The theory of relaxation oscillations for Hutchinson's equation
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 829
EP  - 858
VL  - 202
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_6_a2/
LA  - en
ID  - SM_2011_202_6_a2
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T The theory of relaxation oscillations for Hutchinson's equation
%J Sbornik. Mathematics
%D 2011
%P 829-858
%V 202
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2011_202_6_a2/
%G en
%F SM_2011_202_6_a2
A. Yu. Kolesov; N. Kh. Rozov. The theory of relaxation oscillations for Hutchinson's equation. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 829-858. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a2/

[1] E. F. Mischenko, L. S. Pontryagin, “Periodicheskie resheniya sistem differentsialnykh uravnenii, blizkie k razryvnym”, Dokl. AN SSSR, 102:5 (1955), 889–891 | MR | Zbl

[2] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980 | MR | MR | Zbl | Zbl

[3] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994 | MR | MR | Zbl | Zbl

[4] A. Yu. Kolesov, Yu. S. Kolesov, “Relaxation oscillations in mathematical models of ecology”, Proc. Steklov Inst. Math., 199 (1995), 1–126 | MR | Zbl | Zbl

[5] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. N. Y. Acad. of Sci., 50:4 (1948), 221–246 | DOI

[6] E. M. Wright, “A non-linear difference-differential equation”, J. Reine Angew. Math., 194 (1955), 66–87 | DOI | MR | Zbl

[7] G. S. Jones, “Asymptotic behavior and periodic solutions of a nonlinear differential-difference equation”, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 879–882 | DOI | MR | Zbl

[8] J. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977 | MR | Zbl