Mots-clés : relaxation oscillations
@article{SM_2011_202_6_a2,
author = {A. Yu. Kolesov and N. Kh. Rozov},
title = {The theory of relaxation oscillations for {Hutchinson's} equation},
journal = {Sbornik. Mathematics},
pages = {829--858},
year = {2011},
volume = {202},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a2/}
}
A. Yu. Kolesov; N. Kh. Rozov. The theory of relaxation oscillations for Hutchinson's equation. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 829-858. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a2/
[1] E. F. Mischenko, L. S. Pontryagin, “Periodicheskie resheniya sistem differentsialnykh uravnenii, blizkie k razryvnym”, Dokl. AN SSSR, 102:5 (1955), 889–891 | MR | Zbl
[2] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Math. Concepts Methods Sci. Engrg., 13, Plenum Press, New York, 1980 | MR | MR | Zbl | Zbl
[3] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994 | MR | MR | Zbl | Zbl
[4] A. Yu. Kolesov, Yu. S. Kolesov, “Relaxation oscillations in mathematical models of ecology”, Proc. Steklov Inst. Math., 199 (1995), 1–126 | MR | Zbl | Zbl
[5] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. N. Y. Acad. of Sci., 50:4 (1948), 221–246 | DOI
[6] E. M. Wright, “A non-linear difference-differential equation”, J. Reine Angew. Math., 194 (1955), 66–87 | DOI | MR | Zbl
[7] G. S. Jones, “Asymptotic behavior and periodic solutions of a nonlinear differential-difference equation”, Proc. Nat. Acad. Sci. U.S.A., 47 (1961), 879–882 | DOI | MR | Zbl
[8] J. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977 | MR | Zbl