Triangular set functions and the Nikodym, Brooks-Jewett, and Vitali-Hahn-Saks theorems on convergent sequences of measures
Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 807-827 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider triangular set functions which have no escaping load and are defined on classes of sets which are closed with respect to the union of at most countably many disjoint sets in the given class. We refine and generalize the Nikodym, Brooks-Jewett, and Vitali-Hahn-Saks theorems to these classes of set functions in a nontrivial manner; these include quasi-Lipschitz and finitely additive set functions, vector-valued measures, semimeasures, and outer measures. As immediate consequences of the theorems proved here we obtain a series of statements concerning the extension of properties of set functions, such as convergence, compactness, uniform absolute continuity and absolute continuity, from a ring of sets to the $\sigma$-ring generated by the ring. Bibliography: 18 titles.
Keywords: triangular set functions, quasi-Lipschitz set functions, nonadditive set functions.
@article{SM_2011_202_6_a1,
     author = {N. S. Gusel'nikov},
     title = {Triangular set functions and the {Nikodym,} {Brooks-Jewett,} and {Vitali-Hahn-Saks} theorems on convergent sequences of measures},
     journal = {Sbornik. Mathematics},
     pages = {807--827},
     year = {2011},
     volume = {202},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a1/}
}
TY  - JOUR
AU  - N. S. Gusel'nikov
TI  - Triangular set functions and the Nikodym, Brooks-Jewett, and Vitali-Hahn-Saks theorems on convergent sequences of measures
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 807
EP  - 827
VL  - 202
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_6_a1/
LA  - en
ID  - SM_2011_202_6_a1
ER  - 
%0 Journal Article
%A N. S. Gusel'nikov
%T Triangular set functions and the Nikodym, Brooks-Jewett, and Vitali-Hahn-Saks theorems on convergent sequences of measures
%J Sbornik. Mathematics
%D 2011
%P 807-827
%V 202
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2011_202_6_a1/
%G en
%F SM_2011_202_6_a1
N. S. Gusel'nikov. Triangular set functions and the Nikodym, Brooks-Jewett, and Vitali-Hahn-Saks theorems on convergent sequences of measures. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 807-827. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a1/

[1] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl

[2] G. Ya. Areshkin, V. N. Aleksyuk, V. M. Klimkin, “O nekotorykh svoistvakh vektoroznachnykh mer”, Voprosy sovremennoi matematiki i metodiki ee prepodavaniya v vysshei shkole, Uch. zap. LGPI im. A. I. Gertsena, 404, LGPI im. A. I. Gertsena, L., 1971, 298–321 | MR

[3] J. K. Brooks, R. S. Jewett, “On finitely additive vector measures”, Proc. Nat. Acad. Sci. U.S.A., 67:3 (1970), 1294–1298 | DOI | MR | Zbl

[4] L. Drewnowski, “Equivalence of Brooks–Jewett, Vitali–Hahn–Saks and Nikodym theorems”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 20:9 (1972), 725–731 | MR | Zbl

[5] N..S. Guselnikov, “O teoremakh Bruksa-Dzhevetta i Nikodima”, Teoriya funktsii i funktsionalnyi analiz, LGPI im. A. I. Gertsena, L., 1975, 45–54 | MR

[6] V. N. Aleksyuk, Funktsii mnozhestv, dep. v VINITI 4543-81

[7] N. S. Gusel'nikov, “An analog of the Vitali–Hahn–Saks theorem”, Math. Notes, 19:4 (1976), 387–392 | DOI | MR | Zbl

[8] S. Gudder, “Generalized measure theory”, Found. Phys., 3:3 (1973), 399–411 | DOI | MR

[9] N. S. Guselnikov, Vvedenie v teoriyu neadditivnykh funktsii mnozhestva, Izd-vo Ishimskogo gos. in-ta im. P. P. Ershova, Ishim, 2004

[10] G. Ya. Areshkin, N. S. Guselnikov, “O nekotorykh svoistvakh semeistva $N$-treugolnykh funktsii mnozhestva”, Matematicheskii analiz i teoriya funktsii, vyp. 1, Izd-vo MOPI im. N. K. Krupskoi, M., 1973, 211–219 | MR

[11] N. S. Guselnikov, “Dve teoremy o ravnostepennoi plotnosti semeistv $N$-treugolnykh funktsii mnozhestva”, Funktsionalnyi analiz, vyp. 5, Izd-vo UGPI, Ulyanovsk, 1975, 44–55

[12] N. S. Gusel'nikov, “Triangular set functions and Nikodým's theorem on the uniform boundedness of a family of measures”, Math. USSR-Sb., 35:1 (1979), 19–33 | DOI | MR | Zbl | Zbl

[13] G. Ya. Areshkin, N. S. Guselnikov, “O slaboi ravnostepennoi plotnosti i kompaktnosti semeistv kvazilipshitsevykh funktsii mnozhestva”, Funktsionalnyi analiz, vyp. 5, Izd-vo UGPI, Ulyanovsk, 1975, 3–13

[14] N. S. Guselnikov, “O kvazibazise i ravnostepennoi absolyutnoi nepreryvnosti semeistva $N$-treugolnykh funktsii mnozhestva. I”, Matematicheskii analiz i teoriya funktsii, vyp. 3, Izd-vo MOPI im. N. K. Krupskoi, M., 1974, 211–219 | MR

[15] L. Drewnowski, “Topological rings of sets, continuous set functions, integration. I, II, III”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. et Phus., 20:4 (1972), 269–276 | MR | Zbl

[16] N. Bourbaki, Éléments de mathématiques. Fasc. III. Premiere partie. Livre III: Topologie générale. Chap. 3: Groupes topologiques (théorie élémentaire). Chap. 4: Nombres réels, Hermann Cie, Paris, 1960 | MR | MR | Zbl | Zbl

[17] J. K. Brooks, “Equicontinuous sets of measures and applications to Vitali's integral convergence theorem and control measures”, Advances in Math., 10:2 (1973), 165–171 | DOI | MR | Zbl

[18] R. B. Darts, “The Vitali–Hahn–Saks and Nikodym theorems for additive set functions”, Bull. Amer. Math. Soc., 76 (1970), 1297–1298 | DOI | MR