@article{SM_2011_202_6_a1,
author = {N. S. Gusel'nikov},
title = {Triangular set functions and the {Nikodym,} {Brooks-Jewett,} and {Vitali-Hahn-Saks} theorems on convergent sequences of measures},
journal = {Sbornik. Mathematics},
pages = {807--827},
year = {2011},
volume = {202},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a1/}
}
TY - JOUR AU - N. S. Gusel'nikov TI - Triangular set functions and the Nikodym, Brooks-Jewett, and Vitali-Hahn-Saks theorems on convergent sequences of measures JO - Sbornik. Mathematics PY - 2011 SP - 807 EP - 827 VL - 202 IS - 6 UR - http://geodesic.mathdoc.fr/item/SM_2011_202_6_a1/ LA - en ID - SM_2011_202_6_a1 ER -
N. S. Gusel'nikov. Triangular set functions and the Nikodym, Brooks-Jewett, and Vitali-Hahn-Saks theorems on convergent sequences of measures. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 807-827. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a1/
[1] N. Dunford, J. T. Schwartz, Linear operators. I. General theory., Pure Appl. Math., 7, Intersci. Publ., New York–London, 1958 | MR | MR | Zbl
[2] G. Ya. Areshkin, V. N. Aleksyuk, V. M. Klimkin, “O nekotorykh svoistvakh vektoroznachnykh mer”, Voprosy sovremennoi matematiki i metodiki ee prepodavaniya v vysshei shkole, Uch. zap. LGPI im. A. I. Gertsena, 404, LGPI im. A. I. Gertsena, L., 1971, 298–321 | MR
[3] J. K. Brooks, R. S. Jewett, “On finitely additive vector measures”, Proc. Nat. Acad. Sci. U.S.A., 67:3 (1970), 1294–1298 | DOI | MR | Zbl
[4] L. Drewnowski, “Equivalence of Brooks–Jewett, Vitali–Hahn–Saks and Nikodym theorems”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 20:9 (1972), 725–731 | MR | Zbl
[5] N..S. Guselnikov, “O teoremakh Bruksa-Dzhevetta i Nikodima”, Teoriya funktsii i funktsionalnyi analiz, LGPI im. A. I. Gertsena, L., 1975, 45–54 | MR
[6] V. N. Aleksyuk, Funktsii mnozhestv, dep. v VINITI 4543-81
[7] N. S. Gusel'nikov, “An analog of the Vitali–Hahn–Saks theorem”, Math. Notes, 19:4 (1976), 387–392 | DOI | MR | Zbl
[8] S. Gudder, “Generalized measure theory”, Found. Phys., 3:3 (1973), 399–411 | DOI | MR
[9] N. S. Guselnikov, Vvedenie v teoriyu neadditivnykh funktsii mnozhestva, Izd-vo Ishimskogo gos. in-ta im. P. P. Ershova, Ishim, 2004
[10] G. Ya. Areshkin, N. S. Guselnikov, “O nekotorykh svoistvakh semeistva $N$-treugolnykh funktsii mnozhestva”, Matematicheskii analiz i teoriya funktsii, vyp. 1, Izd-vo MOPI im. N. K. Krupskoi, M., 1973, 211–219 | MR
[11] N. S. Guselnikov, “Dve teoremy o ravnostepennoi plotnosti semeistv $N$-treugolnykh funktsii mnozhestva”, Funktsionalnyi analiz, vyp. 5, Izd-vo UGPI, Ulyanovsk, 1975, 44–55
[12] N. S. Gusel'nikov, “Triangular set functions and Nikodým's theorem on the uniform boundedness of a family of measures”, Math. USSR-Sb., 35:1 (1979), 19–33 | DOI | MR | Zbl | Zbl
[13] G. Ya. Areshkin, N. S. Guselnikov, “O slaboi ravnostepennoi plotnosti i kompaktnosti semeistv kvazilipshitsevykh funktsii mnozhestva”, Funktsionalnyi analiz, vyp. 5, Izd-vo UGPI, Ulyanovsk, 1975, 3–13
[14] N. S. Guselnikov, “O kvazibazise i ravnostepennoi absolyutnoi nepreryvnosti semeistva $N$-treugolnykh funktsii mnozhestva. I”, Matematicheskii analiz i teoriya funktsii, vyp. 3, Izd-vo MOPI im. N. K. Krupskoi, M., 1974, 211–219 | MR
[15] L. Drewnowski, “Topological rings of sets, continuous set functions, integration. I, II, III”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. et Phus., 20:4 (1972), 269–276 | MR | Zbl
[16] N. Bourbaki, Éléments de mathématiques. Fasc. III. Premiere partie. Livre III: Topologie générale. Chap. 3: Groupes topologiques (théorie élémentaire). Chap. 4: Nombres réels, Hermann Cie, Paris, 1960 | MR | MR | Zbl | Zbl
[17] J. K. Brooks, “Equicontinuous sets of measures and applications to Vitali's integral convergence theorem and control measures”, Advances in Math., 10:2 (1973), 165–171 | DOI | MR | Zbl
[18] R. B. Darts, “The Vitali–Hahn–Saks and Nikodym theorems for additive set functions”, Bull. Amer. Math. Soc., 76 (1970), 1297–1298 | DOI | MR