Regular zeros of quadratic maps and their application
Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 783-806 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sufficient conditions for the existence of regular zeros of quadratic maps are obtained. Their applications are indicated to certain problems of analysis related to the inverse function theorem in a neighbourhood of an abnormal point. Bibliography: 13 titles.
Keywords: quadratic maps, regular zeros, inverse function theorem.
@article{SM_2011_202_6_a0,
     author = {A. V. Arutyunov and D. Yu. Karamzin},
     title = {Regular zeros of quadratic maps and their application},
     journal = {Sbornik. Mathematics},
     pages = {783--806},
     year = {2011},
     volume = {202},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_6_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - D. Yu. Karamzin
TI  - Regular zeros of quadratic maps and their application
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 783
EP  - 806
VL  - 202
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_6_a0/
LA  - en
ID  - SM_2011_202_6_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A D. Yu. Karamzin
%T Regular zeros of quadratic maps and their application
%J Sbornik. Mathematics
%D 2011
%P 783-806
%V 202
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2011_202_6_a0/
%G en
%F SM_2011_202_6_a0
A. V. Arutyunov; D. Yu. Karamzin. Regular zeros of quadratic maps and their application. Sbornik. Mathematics, Tome 202 (2011) no. 6, pp. 783-806. http://geodesic.mathdoc.fr/item/SM_2011_202_6_a0/

[1] A. V. Arutyunov, Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl

[2] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Contemp. Soviet Math., Consultants Bureau, New York, 1987 | MR | MR | Zbl | Zbl

[3] E. R. Avakov, “Theorems on estimates in the neighborhood of a singular point of a mapping”, Math. Notes, 47:5 (1990), 425–432 | DOI | MR | Zbl

[4] A. V. Arutyunov, “Implicit function theorem without a priori assumptions about normality”, Comput. Math. Math. Phys., 46:2 (2006), 195–205 | DOI | MR | Zbl

[5] A. A. Agrachev, “Topology of quadratic maps and hessians of smooth maps”, J. Soviet Math., 49:3 (1990), 990–1013 | DOI | MR | Zbl

[6] A. A. Agrachëv, “Homology of intersections of real quadrics”, Soviet Math. Dokl., 37:2 (1988), 493–496 | MR | Zbl

[7] A. V. Arutyunov, “Implicit function theorem as a realization of the Lagrange principle. Abnormal points”, Sb. Math., 191:1 (2000), 1–24 | DOI | MR | Zbl

[8] D. Yu. Karamzin, “Issledovanie dostatochnykh uslovii suschestvovaniya regulyarnogo nulya u kvadratichnykh otobrazhenii”, Issledovaniya po vypuklomu analizu, Itogi nauki. YuFO. Matematicheskii forum, 2, Vladikavkaz, 2009, 84–97

[9] A. A. Agrachev, A. V. Sarychev, “Abnormal sub-Riemannian geodesics: Morse index and rigidity”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13:6 (1996), 635–690 | MR | Zbl

[10] A. V. Arutyunov, “Some properties of quadratic mappings”, Moscow Univ. Comput. Math. Cybernet., 1999, no. 2, 24–28 | MR | Zbl

[11] A. V. Arutyunov, D. Yu. Karamzin, “Necessary optimality conditions in an abnormal optimization problem with equality constraints”, Comput. Math. Math. Phys., 46:8 (2006), 1293–1298 | DOI | MR

[12] J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, Ergeb. Math. Grenzgeb. (3), 36, Springer-Verlag, Berlin, 1998 | MR | Zbl

[13] D. Yu. Karamzin, “K neobkhodimym usloviyam ekstremuma v anormalnykh zadachakh s ogranicheniyami tipa ravenstv i neravenstv”, Voprosy modelirovaniya i analiza v zadachakh prinyatiya reshenii, VTs RAN, M., 2004, 88–99 | MR | Zbl