Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{e}(3)$
Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 749-781 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Sokolov integrable case on $\mathrm{e}(3)^{\star}$ is investigated. This is a Hamiltonian system with $2$ degrees of freedom in which the Hamiltonian and the additional integral are homogeneous polynomials having degree $2$ and $4$, respectively. This system is of interest because connected joint level surfaces of the Hamiltonian and the additional integral are noncompact. The critical points of the moment map and their indices are found, the bifurcation diagram is constructed and the Liouville foliation of the system is described. The Hamiltonian vector fields corresponding to the Hamiltonian and the additional integral are proved to be complete. Bibliography: 22 titles.
Keywords: integrable Hamiltonian systems, completeness of vector fields, bifurcation diagram, noncompact singularities.
Mots-clés : moment map
@article{SM_2011_202_5_a7,
     author = {D. V. Novikov},
     title = {Topological features of the {Sokolov} integrable case on the {Lie} algebra $\mathrm{e}(3)$},
     journal = {Sbornik. Mathematics},
     pages = {749--781},
     year = {2011},
     volume = {202},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_5_a7/}
}
TY  - JOUR
AU  - D. V. Novikov
TI  - Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{e}(3)$
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 749
EP  - 781
VL  - 202
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_5_a7/
LA  - en
ID  - SM_2011_202_5_a7
ER  - 
%0 Journal Article
%A D. V. Novikov
%T Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{e}(3)$
%J Sbornik. Mathematics
%D 2011
%P 749-781
%V 202
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2011_202_5_a7/
%G en
%F SM_2011_202_5_a7
D. V. Novikov. Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{e}(3)$. Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 749-781. http://geodesic.mathdoc.fr/item/SM_2011_202_5_a7/

[1] H. Poincaré, “Sur la précession des corps déformables”, Bull. Astron., 27 (1910), 321–356

[2] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela, RKhD, Izhevsk, 2001 | MR | Zbl

[3] A. V. Borisov, I. S. Mamaev, V. V. Sokolov, “A new integrable case on $\mathrm{so}(4)$”, Dokl. Phys., 46:12 (2001), 888–889 | DOI | MR

[4] V. V. Sokolov, “One class of quadratic $\mathrm{so}(4)$ Hamiltonians”, Dokl. Math., 69:1 (2004), 108–111 | MR | Zbl

[5] V. V. Sokolov, “A new integrable case for the Kirchhoff equation”, Theoret. and Math. Phys., 129:1 (2001), 1335–1340 | DOI | MR | Zbl

[6] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995 | MR | Zbl

[7] G. Haghighatdoost, A. A. Oshemkov, “The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra $\mathrm{so}(4)$”, Sb. Math., 200:6 (2009), 899–921 | DOI | MR | Zbl

[8] P. E. Ryabov, “Bifurcations of first integrals in the Sokolov case”, Theoret. and Math. Phys., 134:2 (2003), 181–197 | DOI | MR | Zbl

[9] G. Haghighatdoost, “Bifurcation diagram of a class of Hamiltonians on algebra $\mathrm{so}(4)$”, Moscow Univ. Math. Bull., 60:6 (2005), 1–8 | MR | Zbl

[10] G. Khagigatdust, “Topologiya izoenergeticheskikh poverkhnostei dlya integriruemogo sluchaya Sokolova na algebre Li $\mathrm{so}(4)$”, Dokl. RAN, 401:5 (2005), 599–602 | MR

[11] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl | Zbl

[12] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl

[13] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl

[14] A. T. Fomenko, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 529–534 | MR | Zbl

[15] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | MR | Zbl

[16] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR

[17] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl

[18] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Trudy seminara po vekt. i tenz. analizu, 25 (1993), 23–109 | Zbl

[19] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Chapman Hall, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl

[20] W. B. Gordon, “On the completeness of Hamiltonian vector fields”, Proc. Amer. Math. Soc., 26:2 (1970), 329–331 | DOI | MR | Zbl

[21] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2010

[22] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer-Verlag, Berlin–New York, 1964 | MR | MR | Zbl