Mots-clés : moment map
@article{SM_2011_202_5_a7,
author = {D. V. Novikov},
title = {Topological features of the {Sokolov} integrable case on the {Lie} algebra $\mathrm{e}(3)$},
journal = {Sbornik. Mathematics},
pages = {749--781},
year = {2011},
volume = {202},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_5_a7/}
}
D. V. Novikov. Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{e}(3)$. Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 749-781. http://geodesic.mathdoc.fr/item/SM_2011_202_5_a7/
[1] H. Poincaré, “Sur la précession des corps déformables”, Bull. Astron., 27 (1910), 321–356
[2] A. V. Borisov, I. S. Mamaev, Dinamika tverdogo tela, RKhD, Izhevsk, 2001 | MR | Zbl
[3] A. V. Borisov, I. S. Mamaev, V. V. Sokolov, “A new integrable case on $\mathrm{so}(4)$”, Dokl. Phys., 46:12 (2001), 888–889 | DOI | MR
[4] V. V. Sokolov, “One class of quadratic $\mathrm{so}(4)$ Hamiltonians”, Dokl. Math., 69:1 (2004), 108–111 | MR | Zbl
[5] V. V. Sokolov, “A new integrable case for the Kirchhoff equation”, Theoret. and Math. Phys., 129:1 (2001), 1335–1340 | DOI | MR | Zbl
[6] V. V. Trofimov, A. T. Fomenko, Algebra i geometriya integriruemykh gamiltonovykh differentsialnykh uravnenii, Faktorial, M., 1995 | MR | Zbl
[7] G. Haghighatdoost, A. A. Oshemkov, “The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra $\mathrm{so}(4)$”, Sb. Math., 200:6 (2009), 899–921 | DOI | MR | Zbl
[8] P. E. Ryabov, “Bifurcations of first integrals in the Sokolov case”, Theoret. and Math. Phys., 134:2 (2003), 181–197 | DOI | MR | Zbl
[9] G. Haghighatdoost, “Bifurcation diagram of a class of Hamiltonians on algebra $\mathrm{so}(4)$”, Moscow Univ. Math. Bull., 60:6 (2005), 1–8 | MR | Zbl
[10] G. Khagigatdust, “Topologiya izoenergeticheskikh poverkhnostei dlya integriruemogo sluchaya Sokolova na algebre Li $\mathrm{so}(4)$”, Dokl. RAN, 401:5 (2005), 599–602 | MR
[11] A. T. Fomenko, “The symplectic topology of completely integrable Hamiltonian systems”, Russian Math. Surveys, 44:1 (1989), 181–219 | DOI | MR | Zbl | Zbl
[12] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[13] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl
[14] A. T. Fomenko, “On the topology of the three-dimensional manifolds arising in Hamiltonian mechanics”, Soviet Math. Dokl., 35:2 (1987), 529–534 | MR | Zbl
[15] A. V. Bolsinov, P. H. Richter, A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | MR | Zbl
[16] M. P. Kharlamov, Topologicheskii analiz integriruemykh zadach dinamiki tverdogo tela, Izd-vo LGU, L., 1988 | MR
[17] A. V. Bolsinov, A. T. Fomenko, “Orbital classification of geodesic flows on two-dimensional ellipsoids. The Jacobi problem is orbitally equivalent to the integrable Euler case in rigid body dynamics”, Funct. Anal. Appl., 29:3 (1995), 149–160 | DOI | MR | Zbl
[18] A. A. Oshemkov, “Vychislenie invariantov Fomenko dlya osnovnykh integriruemykh sluchaev dinamiki tverdogo tela”, Trudy seminara po vekt. i tenz. analizu, 25 (1993), 23–109 | Zbl
[19] A. V. Bolsinov, A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, v. 1, 2, Chapman Hall, Boca Raton, FL, 2004 | MR | MR | Zbl | Zbl
[20] W. B. Gordon, “On the completeness of Hamiltonian vector fields”, Proc. Amer. Math. Soc., 26:2 (1970), 329–331 | DOI | MR | Zbl
[21] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, URSS, M., 2010
[22] A. Hurwitz, Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, Springer-Verlag, Berlin–New York, 1964 | MR | MR | Zbl