Abelian groups with semiprime endomorphism ring
Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 739-748 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A certain class of Abelian groups is considered in which studying mixed Abelian groups with semiprime endomorphism ring is reduced to studying torsion-free Abelian groups with semiprime endomorphism ring. Bibliography: 8 titles.
Keywords: Abelian group, semiprime endomorphism ring.
@article{SM_2011_202_5_a6,
     author = {A. V. Misyakova},
     title = {Abelian groups with semiprime endomorphism ring},
     journal = {Sbornik. Mathematics},
     pages = {739--748},
     year = {2011},
     volume = {202},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_5_a6/}
}
TY  - JOUR
AU  - A. V. Misyakova
TI  - Abelian groups with semiprime endomorphism ring
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 739
EP  - 748
VL  - 202
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_5_a6/
LA  - en
ID  - SM_2011_202_5_a6
ER  - 
%0 Journal Article
%A A. V. Misyakova
%T Abelian groups with semiprime endomorphism ring
%J Sbornik. Mathematics
%D 2011
%P 739-748
%V 202
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2011_202_5_a6/
%G en
%F SM_2011_202_5_a6
A. V. Misyakova. Abelian groups with semiprime endomorphism ring. Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 739-748. http://geodesic.mathdoc.fr/item/SM_2011_202_5_a6/

[1] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Endomorphism rings of abelian groups, Kluwer Acad. Publ., Dordrecht, 2003 | MR | Zbl

[2] L. Fuchs, Infinite abelian groups, v. I, Academic Press, New York–London, 1970 | MR | MR | Zbl | Zbl

[3] L. Fuchs, Infinite abelian groups, v. II, Academic Press, New York–London, 1973 | MR | MR | Zbl

[4] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, MA–Toronto–London, 1966 | MR | MR | Zbl | Zbl

[5] L. H. Rowen, Ring theory, v. 1, Pure Appl. Math., 127, Academic Press, Boston, MA, 1988 | MR | Zbl

[6] E. Yu. Karavdina, “Pervichnyi radikal koltsa obobschennykh matrits poryadka 2”, Mezhdunarodnaya konferentsiya po matematike i mekhanike: Tezisy dokladov, TGU, Tomsk, 2003

[7] E. Yu. Karavdina, “Radikal Dzhekobsona koltsa obobschennykh matrits poryadka 2”, Mezhdunarodnaya konferentsiya po matematike i mekhanike: Izbrannye doklady, TGU, Tomsk, 2003, 19–27

[8] F. W. Anderson, K. R. Fuller, Rings and categories of modules, Springer-Verlag, New York–Heidelberg–Berlin, 1974 | MR | Zbl