Fredholm and spectral properties of Toeplitz operators on $H^p$ spaces over ordered groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 721-737
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider Toeplitz operators on the spaces $H^p(G)$, $1 p\infty$, associated with a compact connected Abelian group $G$ whose character group is ordered and, in the case of total order, prove a theorem on the Fredholm index for those operators which have continuous symbols which generalizes the classical Gohberg-Krein theorem. The results thus obtained are applied to the spectral theory of Toeplitz operators and examples where the index is evaluated explicitly are considered.
Bibliography: 22 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Toeplitz operator, Fredholm operator, Fredholm index, essential spectrum, ordered Abelian group.
                    
                    
                    
                  
                
                
                @article{SM_2011_202_5_a5,
     author = {A. R. Mirotin},
     title = {Fredholm and spectral properties of {Toeplitz} operators on $H^p$ spaces over ordered groups},
     journal = {Sbornik. Mathematics},
     pages = {721--737},
     publisher = {mathdoc},
     volume = {202},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_5_a5/}
}
                      
                      
                    A. R. Mirotin. Fredholm and spectral properties of Toeplitz operators on $H^p$ spaces over ordered groups. Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 721-737. http://geodesic.mathdoc.fr/item/SM_2011_202_5_a5/
