Fredholm and spectral properties of Toeplitz operators on $H^p$ spaces over ordered groups
Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 721-737 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider Toeplitz operators on the spaces $H^p(G)$, $1< p<\infty$, associated with a compact connected Abelian group $G$ whose character group is ordered and, in the case of total order, prove a theorem on the Fredholm index for those operators which have continuous symbols which generalizes the classical Gohberg-Krein theorem. The results thus obtained are applied to the spectral theory of Toeplitz operators and examples where the index is evaluated explicitly are considered. Bibliography: 22 titles.
Keywords: Toeplitz operator, Fredholm operator, Fredholm index, essential spectrum, ordered Abelian group.
@article{SM_2011_202_5_a5,
     author = {A. R. Mirotin},
     title = {Fredholm and spectral properties of {Toeplitz} operators on $H^p$ spaces over ordered groups},
     journal = {Sbornik. Mathematics},
     pages = {721--737},
     year = {2011},
     volume = {202},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_5_a5/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - Fredholm and spectral properties of Toeplitz operators on $H^p$ spaces over ordered groups
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 721
EP  - 737
VL  - 202
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_5_a5/
LA  - en
ID  - SM_2011_202_5_a5
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T Fredholm and spectral properties of Toeplitz operators on $H^p$ spaces over ordered groups
%J Sbornik. Mathematics
%D 2011
%P 721-737
%V 202
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2011_202_5_a5/
%G en
%F SM_2011_202_5_a5
A. R. Mirotin. Fredholm and spectral properties of Toeplitz operators on $H^p$ spaces over ordered groups. Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 721-737. http://geodesic.mathdoc.fr/item/SM_2011_202_5_a5/

[1] A. Böttcher, B. Silbermann, Analysis of Toeplitz operators, Springer Monogr. Math., Springer-Verlag, Berlin–Heidelberg–New-York, 2006 | MR | Zbl

[2] W. Rudin, Fourier analysis on groups, Intersciense Publ., New York–London, 1962 | MR | Zbl

[3] L. Pontrjagin, Topological groups, Princeton Math. Ser., 2, Princeton Univ. Press, Princeton, 1939 | MR | MR | Zbl | Zbl

[4] G. J. Murphy, “Ordered groups and Toeplitz algebras”, J. Operator Theory, 18:2 (1987), 303–326 | MR | Zbl

[5] G. J. Murphy, “Spectral and index theory for Toeplitz operators”, Proc. Roy. Irish Acad. Sect. A, 91:1 (1991), 1–6 | MR | Zbl

[6] G. J. Murphy, “Toeplitz operators and algebras”, Math. Z., 208:1 (1991), 355–362 | DOI | MR | Zbl

[7] G. J. Murphy, “An index theorem for Toeplitz operators”, J. Operator Theory, 29:1 (1993), 97–114 | MR | Zbl

[8] L. A. Coburn, R. G. Douglas, D. G. Schaeffer, I. M. Singer, “$C^\ast$-algebras of operators on a half-space. II: Index theory”, Inst. Hautes Études Sci. Publ. Math., 40:1 (1971), 69–79 | DOI | MR | Zbl

[9] G. J. Murphy, “Toeplitz operators on generalised $H^2$ spaces”, Integral Equations Operator Theory, 15:5 (1992), 825–852 | DOI | MR | Zbl

[10] G. J. Murphy, “Toeplitz operators associated to unimodular algebras”, Integral Equations Operator Theory, 46:3 (2003), 363–375 | DOI | MR | Zbl

[11] M. Pavone, “Toeplitz operators on discrete groups”, J. Operator Theory, 27:2 (1992), 359–384 | MR | Zbl

[12] Q. Xu, X. Chen, “A note on Toeplitz operators on discrete groups”, Proc. Amer. Math. Soc., 126:12 (1998), 3625–3631 | DOI | MR | Zbl

[13] T. Ehrhardt, C. van der Mee, L. Rodman, I. M. Spitkovsky, “Factorization in weighted Wiener matrix algebras on linearly ordered Abelian groups”, Integral Equations Operator Theory, 58:1 (2007), 65–86 | DOI | MR | Zbl

[14] H. Helson, D. Lowdenslager, “Prediction theory and Fourier series in several variables”, Acta Math., 99:1 (1958), 165–202 | DOI | MR | Zbl

[15] S. Bochner, “Generalized conjugate and analytic functions without expansions”, Proc. Nat. Acad. Sci. U.S.A., 45:6 (1959), 855–857 | DOI | MR | Zbl

[16] H. Helson, “Conjugate series and a theorem of Paley”, Pacific J. Math., 8 (1958), 437–446 | MR | Zbl

[17] E. R. van Kampen, “On almost periodic functions of constant absolute value”, J. London Math. Soc., 12 (1937), 3–6 | DOI | Zbl

[18] E. A. Gorin, “A functionalgebra variant of a theorem of Bohr–van Kampen”, Math. USSR-Sb., 11:2 (1970), 233–243 | DOI | MR | Zbl

[19] H. H. Schaefer, Topological vector spaces, Macmillan, New York–London, 1966 | MR | MR | Zbl | Zbl

[20] M. Schechter, “Invariance of the essential spectrum”, Bull. Amer. Math. Soc., 71 (1965), 365–367 | DOI | MR | Zbl

[21] J. B. Conway, A course in functional analysis, 96, no. Grad. Texts in Math., Springer-Verlag, New York, 1990 | MR | Zbl

[22] V. A. Erovenko, Funktsionalnyi analiz: spektralnye i fredgolmovy svoistva lineinykh operatorov, BGU, Minsk, 2002