Boundary values of the Schwarzian derivative of a~regular function
Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 649-663

Voir la notice de l'article provenant de la source Math-Net.Ru

Regular functions $f$ in the half-plane $\operatorname{Im} z>0$ admitting an asymptotic expansion $f(z)=c_1z+c_2z^2+c_3z^3+\gamma(z)z^3$, where $c_1>0$, $\operatorname{Im} c_2=0$ and the angular limit $\angle\lim_{z\to0}\gamma(z)=0$, are considered. For various conditions on the function $f$ inequalities for the real part of the Schwarzian derivative $S_f(0)=6(c_3/c_1-c_2^2/c_1^2)$ are established. These inequalities complement and refine some known versions of Schwarz's lemma. The results obtained are close to the well-known Burns-Krantz rigidity theorem on regular self-maps and its generalizations due to Tauraso, Vlacci and Shoikhet. Bibliography: 16 titles.
Keywords: Schwarzian derivative, Schwarz's lemma, regular function.
@article{SM_2011_202_5_a1,
     author = {V. N. Dubinin},
     title = {Boundary values of the {Schwarzian} derivative of a~regular function},
     journal = {Sbornik. Mathematics},
     pages = {649--663},
     publisher = {mathdoc},
     volume = {202},
     number = {5},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_5_a1/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Boundary values of the Schwarzian derivative of a~regular function
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 649
EP  - 663
VL  - 202
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_5_a1/
LA  - en
ID  - SM_2011_202_5_a1
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Boundary values of the Schwarzian derivative of a~regular function
%J Sbornik. Mathematics
%D 2011
%P 649-663
%V 202
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_5_a1/
%G en
%F SM_2011_202_5_a1
V. N. Dubinin. Boundary values of the Schwarzian derivative of a~regular function. Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 649-663. http://geodesic.mathdoc.fr/item/SM_2011_202_5_a1/