@article{SM_2011_202_5_a1,
author = {V. N. Dubinin},
title = {Boundary values of the {Schwarzian} derivative of a~regular function},
journal = {Sbornik. Mathematics},
pages = {649--663},
year = {2011},
volume = {202},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_5_a1/}
}
V. N. Dubinin. Boundary values of the Schwarzian derivative of a regular function. Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 649-663. http://geodesic.mathdoc.fr/item/SM_2011_202_5_a1/
[1] V. N. Dubinin, “Schwarz's lemma and estimates of coefficients for regular functions with free domain of definition”, Sb. Math., 196:11 (2005), 1605–1625 | DOI | MR | Zbl
[2] R. Osserman, “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128:12 (2000), 3513–3517 | DOI | MR | Zbl
[3] V. N. Dubinin, “The Schwarz inequality on the boundary for functions regular in the disk”, J. Math. Sci. (N. Y.), 122:6 (2004), 3623–3629 | DOI | MR | Zbl
[4] H. P. Boas, “Julius and Julia: mastering the art of the Schwarz lemma”, Amer. Math. Monthly, 117:9 (2010), 770–785 | DOI | MR | Zbl
[5] S. G. Krantz, “The Schwarz lemma at the boundary”, Complex Var. Elliptic Equ. (to appear)
[6] D. M. Burns, S. G. Krantz, “Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary”, J. Amer. Math.Soc., 7:3 (1994), 661–676 | DOI | MR | Zbl
[7] R. Tauraso, F. Vlacci, “Rigidity at the boundary for holomorphic self-maps of the unit disk”, Complex Variables Theory Appl., 45:2 (2001), 151–165 | DOI | MR | Zbl
[8] D. Shoikhet, “Another look at the Burns–Krantz theorem”, J. Anal. Math., 105:1 (2008), 19–42 | DOI | MR | Zbl
[9] M. D. Contreras, S. Diaz-Madrigal, Ch. Pommerenke, “Second angular derivatives and parabolic iteration in the unit disk”, Trans. Amer. Math. Soc., 362:1 (2010), 357–388 | DOI | MR | Zbl
[10] P. S. Bourdon, J. H. Shapiro, “Cyclic phenomena for composition operators”, Mem. Amer. Math. Soc., 125, no. 4, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[11] V. N. Dubinin, “Symmetrization in the geometric theory of functions of a complex variable”, Russian Math. Surveys, 49:1 (1994), 1–79 | DOI | MR | Zbl
[12] I. P. Mityuk, “The symmetrization principle for multiply connected domains”, Soviet Math. Dokl., 5:1 (1964), 928–930 | MR | Zbl
[13] I. P. Mityuk, Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980
[14] V. N. Dubinin, “Majorization principles for meromorphic functions”, Math. Notes, 84:5–6 (2008), 751–755 | DOI | MR
[15] S. Stoilow, Teoria functiilor de o variabila complexa, v. 2, Editura Academiei Republicii Populare Romine, Bucuresti, 1958 | MR | Zbl
[16] W. K. Hayman, Multivalent functions, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl