Nash equilibrium in differential games and the construction of the programmed iteration method
Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 621-647 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to the study of nonzero-sum differential games. The set of payoffs in a situation of Nash equilibrium is examined. It is shown that the set of payoffs in a situation of Nash equilibrium coincides with the set of values of consistent functions which are fixed points of the program absorption operator. A condition for functions to be consistent is given in terms of the weak invariance of the graph of the functions under a certain differential inclusion. Bibliography: 18 titles.
Keywords: differential games, Nash equilibrium, programmed iteration method.
@article{SM_2011_202_5_a0,
     author = {Yu. V. Averboukh},
     title = {Nash equilibrium in differential games and the construction of the programmed iteration method},
     journal = {Sbornik. Mathematics},
     pages = {621--647},
     year = {2011},
     volume = {202},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_5_a0/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - Nash equilibrium in differential games and the construction of the programmed iteration method
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 621
EP  - 647
VL  - 202
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_5_a0/
LA  - en
ID  - SM_2011_202_5_a0
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T Nash equilibrium in differential games and the construction of the programmed iteration method
%J Sbornik. Mathematics
%D 2011
%P 621-647
%V 202
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2011_202_5_a0/
%G en
%F SM_2011_202_5_a0
Yu. V. Averboukh. Nash equilibrium in differential games and the construction of the programmed iteration method. Sbornik. Mathematics, Tome 202 (2011) no. 5, pp. 621-647. http://geodesic.mathdoc.fr/item/SM_2011_202_5_a0/

[1] N. N. Krasovskii, A. I. Subbotin, Game-theoretical control problems, Springer Ser. Soviet Math., Springer-Verlag, New York, 1988 | MR | MR | Zbl | Zbl

[2] N. N. Krasovskii, Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR | Zbl

[3] A. G. Chentsov, “On the structure of a game problem of convergence”, Soviet Math. Dokl., 16:5 (1976), 1404–1408 | MR | Zbl

[4] A. G. Čencov, “On a game problem of converging at a given instant of time”, Math. USSR-Sb., 28:3 (1976), 353–376 | DOI | MR | Zbl

[5] A. I. Subbotin, A. G. Chentsov, Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR | Zbl

[6] A. F. Kleimenov, Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Ekaterinburg, 1993 | MR | Zbl

[7] J. F. Nash, jr., “Equilibrium points in $n$-person games”, Proc. Nat. Acad. Sci. U.S.A., 36:1 (1950), 48–49 | DOI | MR | Zbl

[8] J. Nash, “Non-cooperative games”, Ann. of Math. (2), 54:2 (1951), 286–295 | DOI | MR | Zbl

[9] T. Basar, G. J. Olsder, Dynamic noncooperative game theory, Academic Press, London–New York, 1995 | MR | Zbl

[10] A. F. Kononenko, “On equilibrium positional strategies in nonantagonistic differential games”, Soviet Math. Dokl., 17:6 (1976), 1557–1560 | MR | Zbl

[11] A. F. Kononenko, Yu. E. Chistyakov, “On equilibrium positional strategies in $n$-person differential games”, Soviet Math. Dokl., 37:2 (1988), 514–517 | MR | Zbl

[12] L. A. Petrosyan, N. N. Danilov, Kooperativnye differentsialnye igry i ikh prilozheniya, Izd-vo Tomsk. un-ta, Tomsk, 1985 | MR | Zbl

[13] Yu. E. Chistyakov, “On coalition-free differential games”, Soviet Math. Dokl., 24:1 (1981), 166–169 | MR | Zbl

[14] R. V. Gamkrelidze, Principles of optimal control theory, Plenum Press, New York–London, 1978 | MR | MR | Zbl

[15] J. Warga, Optimal control of differential and functional equations, Academic Press, New York–London, 1972 | MR | MR | Zbl

[16] A. I. Subbotin, Obobschennye resheniya differentsialnykh uravnenii 1-go poryadka. Perspektivy dinamicheskoi optimizatsii, RKhD, Izhevsk, 2003

[17] H. G. Guseinov, A. I. Subbotin, V. N. Ushakov, “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform., 14:3 (1985), 155–167 | MR | Zbl

[18] N. N. Krasovskiy, “A differential game of approach and evasion. I”, Engrg. Cybernetics, 11:2 (1973), 189–203 | MR | Zbl