Variational stability of optimal control problems involving subdifferential operators
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 583-619 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with the problem of minimizing an integral functional with control-nonconvex integrand over the class of solutions of a control system in a Hilbert space subject to a control constraint given by a phase-dependent multivalued map with closed nonconvex values. The integrand, the subdifferential operators, the perturbation term, the initial conditions and the control constraint all depend on a parameter. Along with this problem, the paper considers the problem of minimizing an integral functional with control-convexified integrand over the class of solutions of the original system, but now subject to a convexified control constraint. By a solution of a control system we mean a ‘trajectory-control’ pair. For each value of the parameter, the convexified problem is shown to have a solution, which is the limit of a minimizing sequence of the original problem, and the minimal value of the functional with the convexified integrand is a continuous function of the parameter. This property is commonly referred to as the variational stability of a minimization problem. An example of a control parabolic system with hysteresis and diffusion effects is considered. Bibliography: 24 titles.
Keywords: nonconvex integrands, optimal control.
Mots-clés : Mosco convergence
@article{SM_2011_202_4_a5,
     author = {A. A. Tolstonogov},
     title = {Variational stability of optimal control problems involving subdifferential operators},
     journal = {Sbornik. Mathematics},
     pages = {583--619},
     year = {2011},
     volume = {202},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a5/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Variational stability of optimal control problems involving subdifferential operators
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 583
EP  - 619
VL  - 202
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a5/
LA  - en
ID  - SM_2011_202_4_a5
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Variational stability of optimal control problems involving subdifferential operators
%J Sbornik. Mathematics
%D 2011
%P 583-619
%V 202
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a5/
%G en
%F SM_2011_202_4_a5
A. A. Tolstonogov. Variational stability of optimal control problems involving subdifferential operators. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 583-619. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a5/

[1] I. Ekeland, R. Temam, Convex analysis and variational problems, Studies in Mathematics and its Applications, 1, North-Holland, Amsterdam–Oxford; Elsevier, New York, 1976 | MR | MR | Zbl | Zbl

[2] Z. Artstein, “A variational convergence that yields chattering systems”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6, suppl. (1989), 49–71 | MR | Zbl

[3] S. Migórski, “Sensitivity analysis of distributed-parameter optimal control problems for nonlinear parabolic equations”, J. Optim. Theory Appl., 87:3 (1995), 595–613 | DOI | MR | Zbl

[4] S. Migórski, “Variational stability analysis of optimal control problems for systems governed by nonlinear second order evolution equations”, J. Math. Systems, Estimation, Control, 6:4 (1996), 469–472 | Zbl

[5] Sh. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. II, Math. Appl., 500, Applications, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl

[6] M. Majewski, “Stability analysis of an optimal control problem for a hyperbolic equation”, J. Optim. Theory Appl., 141:1 (2009), 127–146 | DOI | MR | Zbl

[7] A. A. Tolstonogov, “Bogolyubov's theorem under constraints generated by a controlled second-order evolution system”, Izv. Math., 67:5 (2003), 1031–1060 | DOI | MR | Zbl

[8] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[9] T. M. Flett, “Extensions of Lipschitz functions”, J. London Math. Soc. (2), 7:4 (1974), 604–608 | DOI | MR | Zbl

[10] A. A. Tolstonogov, “Relaxation in non-convex optimal control problems described by first-order evolution equations”, Sb. Math., 190:11 (1999), 1689–1714 | DOI | MR | Zbl

[11] H. Attouch, Variational convergence for functions and operators, Appl. Math. Ser., Pitman, Boston, MA, 1984 | MR | Zbl

[12] A. A. Tolstonogov, “Mosco convergence of integral functionals and its applications”, Sb. Math., 200:3 (2009), 429–454 | DOI | MR | Zbl

[13] N. Kenmochi, “Solvability of nonlinear evolution equations with time-dependent constraints and applications”, Bull. Fac. Educ.Chiba Univ., 30 (1981), 1–87 | Zbl

[14] A. A. Tolstonogov, “Svoistva mnozhestva par “traektoriya-upravlenie” upravlyaemoi sistemy s subdifferentsialnymi operatorami”, Problemy matem. analiza, 2009, no. 42, 95–127

[15] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam–London; Elsevier, New York, 1973 | MR | Zbl

[16] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: Existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl

[17] A. A. Tolstonogov, “Control systems of subdifferential type depending on a parameter”, Izv. Math., 72:5 (2008), 985–1022 | DOI | MR | Zbl

[18] A. A. Tolstonogov, “Scorza–Dragoni's theorem for multi-valued mappings with variable domain of definition”, Math. Notes, 48:5 (1990), 1151–1158 | DOI | MR | Zbl

[19] N. Yamazaki, M. Takahashi, M. Kubo, “Global attractors of phase transition models with hysteresis and diffusion effects”, Free boundary problems: theory and applications (Chiba, Japan, 1999), v. II, GAKUTO Internat. Ser. Math. Sci. Appl., 14, Gakkō tosho, Tokyo, 2000, 460–471 | MR | Zbl

[20] K.-H. Hoffmann, N. Kenmochi, M. Kubo, N. Yamazaki, “Optimal control problems for models of phase-field type with hysteresis of play operator”, Adv. Math. Sci. Appl., 17:1 (2007), 305–336 | MR | Zbl

[21] A. Visintin, Differential models of hysteresis, Appl. Math. Sci., 111, Springer-Verlag, Berlin, 1994 | MR | Zbl

[22] P.-J. Laurent, Approximation et optimisation, Hermann, Paris, 1972 | MR | Zbl

[23] V. Barbu, Optimal control of variational inequalities, Res. Notes in Math., 100, Pitman, Boston–London–Melbourne, 1984 | MR | Zbl

[24] V. Barbu, Partial differential equations and boundary value problems, Math. Appl., 441, Kluwer Acad. Publ., Dordrecht, 1998 | MR | Zbl