Mots-clés : Mosco convergence
@article{SM_2011_202_4_a5,
author = {A. A. Tolstonogov},
title = {Variational stability of optimal control problems involving subdifferential operators},
journal = {Sbornik. Mathematics},
pages = {583--619},
year = {2011},
volume = {202},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a5/}
}
A. A. Tolstonogov. Variational stability of optimal control problems involving subdifferential operators. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 583-619. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a5/
[1] I. Ekeland, R. Temam, Convex analysis and variational problems, Studies in Mathematics and its Applications, 1, North-Holland, Amsterdam–Oxford; Elsevier, New York, 1976 | MR | MR | Zbl | Zbl
[2] Z. Artstein, “A variational convergence that yields chattering systems”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6, suppl. (1989), 49–71 | MR | Zbl
[3] S. Migórski, “Sensitivity analysis of distributed-parameter optimal control problems for nonlinear parabolic equations”, J. Optim. Theory Appl., 87:3 (1995), 595–613 | DOI | MR | Zbl
[4] S. Migórski, “Variational stability analysis of optimal control problems for systems governed by nonlinear second order evolution equations”, J. Math. Systems, Estimation, Control, 6:4 (1996), 469–472 | Zbl
[5] Sh. Hu, N. S. Papageorgiou, Handbook of multivalued analysis, v. II, Math. Appl., 500, Applications, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl
[6] M. Majewski, “Stability analysis of an optimal control problem for a hyperbolic equation”, J. Optim. Theory Appl., 141:1 (2009), 127–146 | DOI | MR | Zbl
[7] A. A. Tolstonogov, “Bogolyubov's theorem under constraints generated by a controlled second-order evolution system”, Izv. Math., 67:5 (2003), 1031–1060 | DOI | MR | Zbl
[8] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl
[9] T. M. Flett, “Extensions of Lipschitz functions”, J. London Math. Soc. (2), 7:4 (1974), 604–608 | DOI | MR | Zbl
[10] A. A. Tolstonogov, “Relaxation in non-convex optimal control problems described by first-order evolution equations”, Sb. Math., 190:11 (1999), 1689–1714 | DOI | MR | Zbl
[11] H. Attouch, Variational convergence for functions and operators, Appl. Math. Ser., Pitman, Boston, MA, 1984 | MR | Zbl
[12] A. A. Tolstonogov, “Mosco convergence of integral functionals and its applications”, Sb. Math., 200:3 (2009), 429–454 | DOI | MR | Zbl
[13] N. Kenmochi, “Solvability of nonlinear evolution equations with time-dependent constraints and applications”, Bull. Fac. Educ.Chiba Univ., 30 (1981), 1–87 | Zbl
[14] A. A. Tolstonogov, “Svoistva mnozhestva par “traektoriya-upravlenie” upravlyaemoi sistemy s subdifferentsialnymi operatorami”, Problemy matem. analiza, 2009, no. 42, 95–127
[15] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam–London; Elsevier, New York, 1973 | MR | Zbl
[16] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: Existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl
[17] A. A. Tolstonogov, “Control systems of subdifferential type depending on a parameter”, Izv. Math., 72:5 (2008), 985–1022 | DOI | MR | Zbl
[18] A. A. Tolstonogov, “Scorza–Dragoni's theorem for multi-valued mappings with variable domain of definition”, Math. Notes, 48:5 (1990), 1151–1158 | DOI | MR | Zbl
[19] N. Yamazaki, M. Takahashi, M. Kubo, “Global attractors of phase transition models with hysteresis and diffusion effects”, Free boundary problems: theory and applications (Chiba, Japan, 1999), v. II, GAKUTO Internat. Ser. Math. Sci. Appl., 14, Gakkō tosho, Tokyo, 2000, 460–471 | MR | Zbl
[20] K.-H. Hoffmann, N. Kenmochi, M. Kubo, N. Yamazaki, “Optimal control problems for models of phase-field type with hysteresis of play operator”, Adv. Math. Sci. Appl., 17:1 (2007), 305–336 | MR | Zbl
[21] A. Visintin, Differential models of hysteresis, Appl. Math. Sci., 111, Springer-Verlag, Berlin, 1994 | MR | Zbl
[22] P.-J. Laurent, Approximation et optimisation, Hermann, Paris, 1972 | MR | Zbl
[23] V. Barbu, Optimal control of variational inequalities, Res. Notes in Math., 100, Pitman, Boston–London–Melbourne, 1984 | MR | Zbl
[24] V. Barbu, Partial differential equations and boundary value problems, Math. Appl., 441, Kluwer Acad. Publ., Dordrecht, 1998 | MR | Zbl