Initial-value problem for a linear ordinary differential equation of noninteger order
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 571-582 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An initial-value problem for a linear ordinary differential equation of noninteger order with Riemann-Liouville derivatives is stated and solved. The initial conditions of the problem ensure that (by contrast with the Cauchy problem) it is uniquely solvable for an arbitrary set of parameters specifying the orders of the derivatives involved in the equation; these conditions are necessary for the equation under consideration. The problem is reduced to an integral equation; an explicit representation of the solution in terms of the Wright function is constructed. As a consequence of these results, necessary and sufficient conditions for the solvability of the Cauchy problem are obtained. Bibliography: 7 titles.
Keywords: fractional order derivative, Cauchy problem, differential equation of fractional order, Wright function, Hille-Tamarkin formula.
@article{SM_2011_202_4_a4,
     author = {A. V. Pskhu},
     title = {Initial-value problem for a~linear ordinary differential equation of noninteger order},
     journal = {Sbornik. Mathematics},
     pages = {571--582},
     year = {2011},
     volume = {202},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a4/}
}
TY  - JOUR
AU  - A. V. Pskhu
TI  - Initial-value problem for a linear ordinary differential equation of noninteger order
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 571
EP  - 582
VL  - 202
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a4/
LA  - en
ID  - SM_2011_202_4_a4
ER  - 
%0 Journal Article
%A A. V. Pskhu
%T Initial-value problem for a linear ordinary differential equation of noninteger order
%J Sbornik. Mathematics
%D 2011
%P 571-582
%V 202
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a4/
%G en
%F SM_2011_202_4_a4
A. V. Pskhu. Initial-value problem for a linear ordinary differential equation of noninteger order. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 571-582. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a4/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[2] J. H. Barrett, “Differential equations of non-integer order”, Canadian J. Math., 6:4 (1954), 529–541 | DOI | MR | Zbl

[3] I. Ozturk, “On the theory of fractional differential equation”, Dokl. Adyg. (Cherkes.) Mezhdunar. AN, 3:1 (1998), 35–39

[4] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. Akad. Nauk Arm. SSR. Ser. matem., 3:1 (1968), 3–29 | MR | Zbl

[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and applications of fractional differential equations”, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[6] E. M. Wright, “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:1 (1933), 71–79 | DOI | Zbl

[7] E. Hille, J. D. Tamarkin, “On the theory of linear integral equations”, Ann. of Math. (2), 31:3 (1930), 479–528 | DOI | MR | Zbl