On the equivalence of some spectral sequences for Serre fibrations
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 547-570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Several different constructions of a spectral sequence for a Serre fibration $\pi\colon E \to B$ over a compact simply connected manifold $B$ are considered in this paper. Namely, we consider the spectral sequence for the minimal model $(\Lambda V\otimes \Lambda W,d)$ of the fibration, along with the spectral sequences arising from the Čech filtration in the complexes $\check{C}^*(\mathscr{U}, A_{PL}^*(\pi^{-1}(U)))$ and $\check{C}^*(\mathscr{U}, S^*(\pi^{-1}(U)))$, where $\mathscr{U}=\{U\}$ is a covering of the base $B$. It is known that all these spectral sequences have the same terms $E_2^{*,*}=H^*(X)\otimes H^*(F)$ and converge to the cohomology of the total space $E$. A new natural isomorphism of these spectral sequences is constructed in every term $E_r$ with $r\ge2$. It is also proved that in the case of a smooth locally trivial fibration these spectral sequences are isomorphic to the spectral sequences of the complex of smooth forms $\Omega^*(E)$ and of the Čech-de Rham complex. It is therefore established that all these constructions give the same spectral sequence, starting from the $E_2$ term. Bibliography: 9 titles.
Keywords: spectral sequences, Čech-de Rham complex, minimal model.
Mots-clés : Serre fibration
@article{SM_2011_202_4_a3,
     author = {A. Yu. Onishchenko and F. Yu. Popelenskii},
     title = {On the equivalence of some spectral sequences for {Serre} fibrations},
     journal = {Sbornik. Mathematics},
     pages = {547--570},
     year = {2011},
     volume = {202},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Onishchenko
AU  - F. Yu. Popelenskii
TI  - On the equivalence of some spectral sequences for Serre fibrations
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 547
EP  - 570
VL  - 202
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/
LA  - en
ID  - SM_2011_202_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Onishchenko
%A F. Yu. Popelenskii
%T On the equivalence of some spectral sequences for Serre fibrations
%J Sbornik. Mathematics
%D 2011
%P 547-570
%V 202
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/
%G en
%F SM_2011_202_4_a3
A. Yu. Onishchenko; F. Yu. Popelenskii. On the equivalence of some spectral sequences for Serre fibrations. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 547-570. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/

[1] J.-P. Serre, “Homologie singulière des espaces fibrés. Applications”, Ann. of Math. (2), 54:3 (1951), 425–505 | DOI | MR | MR | Zbl

[2] J. McCleary, A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[3] D. W. Barnes, Spectral sequence constructors in algebra and topology, Mem. Amer. Math. Soc., 53, no. 317, Amer. Math. Soc., Providence, RI, 1985 | MR | Zbl

[4] Y. Félix, S. Halperin, J.-C. Thomas, Rational homotopy theory, Grad. Texts in Math., 205, Springer-Verlag, New York, 2001 | MR | Zbl

[5] Ph. A. Griffiths, J. W. Morgan, Rational homotopy theory and differential forms, Progr. Math., 16, Birkhäuser, Boston, MA, 1981 | MR | MR | Zbl | Zbl

[6] A. Yu. Onischenko, F. Yu. Popelenskii, “Ob ekvivalentnosti nekotorykh spektralnykh posledovatelnostei gladkogo rassloeniya”, Sovrem. probl. mat. i mekh., matem., 3:2 (2009), 104–114

[7] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl

[8] J. W. Vick, Homology theory. An introduction to algebraic topology, Academic Pres, New York–London, 1973 | MR | Zbl

[9] R. Bott, L. W. Tu, Differential forms in algebraic topology, Grad. Texts in Math., 82, Springer-Verlag, New York–Berlin, 1982 | MR | MR | Zbl | Zbl