On the equivalence of some spectral sequences for Serre fibrations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 547-570
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Several different constructions of a spectral sequence for a Serre fibration $\pi\colon E \to B$ over  a compact simply connected manifold $B$ are considered in this paper. Namely, we consider the spectral sequence for the minimal model $(\Lambda V\otimes \Lambda W,d)$ of the fibration, along with the spectral sequences arising from the Čech filtration in the complexes $\check{C}^*(\mathscr{U}, A_{PL}^*(\pi^{-1}(U)))$ and $\check{C}^*(\mathscr{U}, S^*(\pi^{-1}(U)))$, where $\mathscr{U}=\{U\}$ is a covering of the base $B$. It is known that all these spectral sequences have the same terms $E_2^{*,*}=H^*(X)\otimes H^*(F)$ and converge to the cohomology of the total space $E$. A new natural isomorphism of these spectral
sequences is constructed in every term $E_r$ with $r\ge2$. It is also proved that in the case of a smooth locally trivial fibration these spectral sequences are isomorphic to the spectral sequences of the complex of smooth forms $\Omega^*(E)$ and of the Čech-de Rham complex. It is therefore established that all these
constructions give the same spectral sequence, starting from the $E_2$ term.
Bibliography: 9 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
spectral sequences, Čech-de Rham complex, minimal model.
Mots-clés : Serre fibration
                    
                  
                
                
                Mots-clés : Serre fibration
@article{SM_2011_202_4_a3,
     author = {A. Yu. Onishchenko and F. Yu. Popelenskii},
     title = {On the equivalence of some spectral sequences for {Serre} fibrations},
     journal = {Sbornik. Mathematics},
     pages = {547--570},
     publisher = {mathdoc},
     volume = {202},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/}
}
                      
                      
                    TY - JOUR AU - A. Yu. Onishchenko AU - F. Yu. Popelenskii TI - On the equivalence of some spectral sequences for Serre fibrations JO - Sbornik. Mathematics PY - 2011 SP - 547 EP - 570 VL - 202 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/ LA - en ID - SM_2011_202_4_a3 ER -
A. Yu. Onishchenko; F. Yu. Popelenskii. On the equivalence of some spectral sequences for Serre fibrations. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 547-570. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/
