On the equivalence of some spectral sequences for Serre fibrations
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 547-570

Voir la notice de l'article provenant de la source Math-Net.Ru

Several different constructions of a spectral sequence for a Serre fibration $\pi\colon E \to B$ over a compact simply connected manifold $B$ are considered in this paper. Namely, we consider the spectral sequence for the minimal model $(\Lambda V\otimes \Lambda W,d)$ of the fibration, along with the spectral sequences arising from the Čech filtration in the complexes $\check{C}^*(\mathscr{U}, A_{PL}^*(\pi^{-1}(U)))$ and $\check{C}^*(\mathscr{U}, S^*(\pi^{-1}(U)))$, where $\mathscr{U}=\{U\}$ is a covering of the base $B$. It is known that all these spectral sequences have the same terms $E_2^{*,*}=H^*(X)\otimes H^*(F)$ and converge to the cohomology of the total space $E$. A new natural isomorphism of these spectral sequences is constructed in every term $E_r$ with $r\ge2$. It is also proved that in the case of a smooth locally trivial fibration these spectral sequences are isomorphic to the spectral sequences of the complex of smooth forms $\Omega^*(E)$ and of the Čech-de Rham complex. It is therefore established that all these constructions give the same spectral sequence, starting from the $E_2$ term. Bibliography: 9 titles.
Keywords: spectral sequences, Čech-de Rham complex, minimal model.
Mots-clés : Serre fibration
@article{SM_2011_202_4_a3,
     author = {A. Yu. Onishchenko and F. Yu. Popelenskii},
     title = {On the equivalence of some spectral sequences for {Serre} fibrations},
     journal = {Sbornik. Mathematics},
     pages = {547--570},
     publisher = {mathdoc},
     volume = {202},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/}
}
TY  - JOUR
AU  - A. Yu. Onishchenko
AU  - F. Yu. Popelenskii
TI  - On the equivalence of some spectral sequences for Serre fibrations
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 547
EP  - 570
VL  - 202
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/
LA  - en
ID  - SM_2011_202_4_a3
ER  - 
%0 Journal Article
%A A. Yu. Onishchenko
%A F. Yu. Popelenskii
%T On the equivalence of some spectral sequences for Serre fibrations
%J Sbornik. Mathematics
%D 2011
%P 547-570
%V 202
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/
%G en
%F SM_2011_202_4_a3
A. Yu. Onishchenko; F. Yu. Popelenskii. On the equivalence of some spectral sequences for Serre fibrations. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 547-570. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a3/