A proof of the Kontsevich-Soǐbel'man conjecture
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 527-546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that the ‘Fukaya category’ is actually an $A_\infty$-precategory in the sense of Kontsevich and Soǐbel'man. This is related to the fact that, generally speaking, the morphism spaces are defined only for transversal pairs of Lagrangian submanifolds, and higher multiplications are defined only for transversal sequences of Lagrangian submanifolds. Kontsevich and Soǐbel'man made the following conjecture: for any graded commutative ring $k$, the quasi-equivalence classes of $A_\infty$-precategories over $k$ are in bijection with the quasi-equivalence classes of $A_\infty$-categories over $k$ with strict (or weak) identity morphisms. In this paper this conjecture is proved for essentially small $A_\infty$-(pre)categories when $k$ is a field. In particular, this implies that the Fukaya $A_\infty$-precategory can be replaced with a quasi-equivalent actual $A_\infty$-category. Furthermore, a natural construction of the pretriangulated envelope for $A_\infty$-precategories is presented and it is proved that it is invariant under quasi-equivalences. Bibliography: 8 titles.
Keywords: $A_\infty$-categories, Fukaya category, homological mirror symmetry.
@article{SM_2011_202_4_a2,
     author = {A. I. Efimov},
     title = {A proof of the {Kontsevich-Soǐbel'man} conjecture},
     journal = {Sbornik. Mathematics},
     pages = {527--546},
     year = {2011},
     volume = {202},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a2/}
}
TY  - JOUR
AU  - A. I. Efimov
TI  - A proof of the Kontsevich-Soǐbel'man conjecture
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 527
EP  - 546
VL  - 202
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a2/
LA  - en
ID  - SM_2011_202_4_a2
ER  - 
%0 Journal Article
%A A. I. Efimov
%T A proof of the Kontsevich-Soǐbel'man conjecture
%J Sbornik. Mathematics
%D 2011
%P 527-546
%V 202
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a2/
%G en
%F SM_2011_202_4_a2
A. I. Efimov. A proof of the Kontsevich-Soǐbel'man conjecture. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 527-546. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a2/

[1] K. Fukaya, “Morse homotopy, $A^\infty$-category, and Floer homologies”, Proceedings of the GARC workshop on geometry and topology (Seoul, Korea, 1993), Lecture Notes Ser., 18, Seoul National Univ., Seoul, 1993, 1–102 | MR | Zbl

[2] M. Kontsevich, Y. Soibelman, “Homological mirror symmetry and torus fibrations”, Symplectic geometry and mirror symmetry (Seoul, South Korea, 2000), World Scientific, Singapore–River Edge, NJ, 2001, 203–263 | MR | Zbl

[3] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of the international congress of mathematicians (Zürich, Switzerland, 1994), v. I, Birkhäuser, Basel, 1995, 120–139 | MR | Zbl

[4] P. Seidel, Fukaya categories and Picard–Lefschetz theory, Zur. Lect. Adv. Math., European Math. Soc., Zürich, 2008 | MR | Zbl

[5] K. Lefèvre-Hasegawa, Sur les $A_\infty$-catégories, Thèse de doctorat, Université Denis Diderot – Paris 7, 2003

[6] A. Polishchuk, “Extensions of homogeneous coordinate rings to $A_\infty$-algebras”, Homology Homotopy Appl., 5:1 (2003), 407–421 | MR | Zbl

[7] A. I. Efimov, V. A. Lunts, D. O. Orlov, “Deformation theory of objects in homotopy and derived categories II: Pro-representability of the deformation functor”, Adv. Math., 224:1 (2010), 45–102 | DOI | MR | Zbl

[8] A. I. Bondal, M. M. Kapranov, “Enhanced triangulated categories”, Math. USSR-Sb., 70:1 (1991), 93–107 | DOI | MR | Zbl | Zbl