@article{SM_2011_202_4_a2,
author = {A. I. Efimov},
title = {A proof of the {Kontsevich-Soǐbel'man} conjecture},
journal = {Sbornik. Mathematics},
pages = {527--546},
year = {2011},
volume = {202},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a2/}
}
A. I. Efimov. A proof of the Kontsevich-Soǐbel'man conjecture. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 527-546. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a2/
[1] K. Fukaya, “Morse homotopy, $A^\infty$-category, and Floer homologies”, Proceedings of the GARC workshop on geometry and topology (Seoul, Korea, 1993), Lecture Notes Ser., 18, Seoul National Univ., Seoul, 1993, 1–102 | MR | Zbl
[2] M. Kontsevich, Y. Soibelman, “Homological mirror symmetry and torus fibrations”, Symplectic geometry and mirror symmetry (Seoul, South Korea, 2000), World Scientific, Singapore–River Edge, NJ, 2001, 203–263 | MR | Zbl
[3] M. Kontsevich, “Homological algebra of mirror symmetry”, Proceedings of the international congress of mathematicians (Zürich, Switzerland, 1994), v. I, Birkhäuser, Basel, 1995, 120–139 | MR | Zbl
[4] P. Seidel, Fukaya categories and Picard–Lefschetz theory, Zur. Lect. Adv. Math., European Math. Soc., Zürich, 2008 | MR | Zbl
[5] K. Lefèvre-Hasegawa, Sur les $A_\infty$-catégories, Thèse de doctorat, Université Denis Diderot – Paris 7, 2003
[6] A. Polishchuk, “Extensions of homogeneous coordinate rings to $A_\infty$-algebras”, Homology Homotopy Appl., 5:1 (2003), 407–421 | MR | Zbl
[7] A. I. Efimov, V. A. Lunts, D. O. Orlov, “Deformation theory of objects in homotopy and derived categories II: Pro-representability of the deformation functor”, Adv. Math., 224:1 (2010), 45–102 | DOI | MR | Zbl
[8] A. I. Bondal, M. M. Kapranov, “Enhanced triangulated categories”, Math. USSR-Sb., 70:1 (1991), 93–107 | DOI | MR | Zbl | Zbl