Cohomological descent theory for a morphism of stacks and for equivariant derived categories
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 495-526 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, we find necessary and sufficient conditions under which, if $X\to S$ is a morphism of algebraic varieties (or, in a more general case, of stacks), the derived category of $S$ can be recovered by using the tools of descent theory from the derived category of $X$. We show that for an action of a linearly reductive algebraic group $G$ on a scheme $X$ this result implies the equivalence of the derived category of $G$-equivariant sheaves on $X$ and the category of objects in the derived category of sheaves on $X$ with a given action of $G$ on each object. Bibliography: 18 titles.
Keywords: derived categories, descent theory, algebraic variety.
@article{SM_2011_202_4_a1,
     author = {A. Elagin},
     title = {Cohomological descent theory for a~morphism of stacks and for equivariant derived categories},
     journal = {Sbornik. Mathematics},
     pages = {495--526},
     year = {2011},
     volume = {202},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a1/}
}
TY  - JOUR
AU  - A. Elagin
TI  - Cohomological descent theory for a morphism of stacks and for equivariant derived categories
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 495
EP  - 526
VL  - 202
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a1/
LA  - en
ID  - SM_2011_202_4_a1
ER  - 
%0 Journal Article
%A A. Elagin
%T Cohomological descent theory for a morphism of stacks and for equivariant derived categories
%J Sbornik. Mathematics
%D 2011
%P 495-526
%V 202
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a1/
%G en
%F SM_2011_202_4_a1
A. Elagin. Cohomological descent theory for a morphism of stacks and for equivariant derived categories. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 495-526. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a1/

[1] M. Barr, Ch. Wells, “Toposes, triples and theories”, Repr. Theory Appl. Categ., 12 (2005), 1–288 | MR | Zbl

[2] M. Kashiwara, P. Shapira, Categories and sheaves, Grundlehren Math. Wiss., 332, Springer-Verlag, Berlin, 2006 | MR | Zbl

[3] J. Lipman, “Notes on derived functors and Grothendieck duality”, Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Math., 1960, Springer-Verlag, New York, 2009, 1–259 | DOI | MR | Zbl

[4] S. Mac Lane, Categories for the working mathematician, Grad. Texts in Math., 5, Springer-Verlag, New York, 1998 | MR | Zbl

[5] A. Neeman, Triangulated categories, Ann. of Math. Stud., 148, Princeton Univ. Press, Princeton, NJ, 2001 | MR | Zbl

[6] A. Grothendieck, “Éléments de géometrie algébrique. IV: Étude locale des schemas et des morphismes de schemas”, Inst. Hautes Etudes Sci. Publ. Math., 20:1 (1964), 5–251 | DOI | MR | Zbl

[7] G. Laumon, L. Moret-Bailly, Champs algébriques, Ergeb. Math. Grenzgeb. (3), 39, Springer-Verlag, Berlin, 2000 | MR | Zbl

[8] Y. Laszlo, M. Olsson, “The six operations for sheaves on Artin stacks. I. Finite coefficients”, Publ. Math. Inst. Hautes Études Sci., 107:1 (2008), 109–168 | DOI | MR | Zbl

[9] D. Arinkin, R. Bezrukavnikov, “Perverse coherent sheaves”, Mosc. Math. J., 10:1 (2010), 3–29 | MR | Zbl

[10] N. Spaltenstein, “Resolutions of unbounded complexes”, Compositio Math., 65:2 (1988), 121–154 | MR | Zbl

[11] M. Bökstedt, A. Neeman, “Homotopy limits in triangulated categories”, Compositio Math., 86:2 (1993), 209–234 | MR | Zbl

[12] A. I. Bondal, M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36 | MR | Zbl

[13] J. S. Milne, Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, Princeton, NJ, 1980 | MR | MR | Zbl | Zbl

[14] A. Kuznetsov, Base change for semiorthogonal decompositions, arXiv: 0711.1734

[15] P. Deligne, “Théoreme de Lefschetz et critères de dégénérescence de suites spectrales”, Inst. Hautes Études Sci. Publ. Math., 35:1 (1968), 107–126 | DOI | MR | Zbl

[16] P. Deligne, “Théorie de Hodge. III”, Inst. Hautes Études Sci. Publ. Math., 44:1 (1974), 5–77 | DOI | MR | Zbl

[17] D. Mumford, J. Fogarty, Geometric invariant theory, 34, no. Ergeb. Math. Grenzgeb., Springer-Verlag, Berlin–Heidelberg–New York, 1982 | MR | Zbl

[18] M. Nagata, “Complete reducibility of rational representations of a matric group”, J. Math. Kyoto Univ., 1 (1961), 87–99 | MR | Zbl