Cohomological descent theory for a~morphism of stacks and for equivariant derived categories
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 495-526

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we find necessary and sufficient conditions under which, if $X\to S$ is a morphism of algebraic varieties (or, in a more general case, of stacks), the derived category of $S$ can be recovered by using the tools of descent theory from the derived category of $X$. We show that for an action of a linearly reductive algebraic group $G$ on a scheme $X$ this result implies the equivalence of the derived category of $G$-equivariant sheaves on $X$ and the category of objects in the derived category of sheaves on $X$ with a given action of $G$ on each object. Bibliography: 18 titles.
Keywords: derived categories, descent theory, algebraic variety.
@article{SM_2011_202_4_a1,
     author = {A. Elagin},
     title = {Cohomological descent theory for a~morphism of stacks and for equivariant derived categories},
     journal = {Sbornik. Mathematics},
     pages = {495--526},
     publisher = {mathdoc},
     volume = {202},
     number = {4},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a1/}
}
TY  - JOUR
AU  - A. Elagin
TI  - Cohomological descent theory for a~morphism of stacks and for equivariant derived categories
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 495
EP  - 526
VL  - 202
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a1/
LA  - en
ID  - SM_2011_202_4_a1
ER  - 
%0 Journal Article
%A A. Elagin
%T Cohomological descent theory for a~morphism of stacks and for equivariant derived categories
%J Sbornik. Mathematics
%D 2011
%P 495-526
%V 202
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a1/
%G en
%F SM_2011_202_4_a1
A. Elagin. Cohomological descent theory for a~morphism of stacks and for equivariant derived categories. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 495-526. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a1/