$\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 467-493
Voir la notice de l'article provenant de la source Math-Net.Ru
A system of differential equations with 5 unknowns is fully investigated; this system is equivalent to the existence of a parallel $\mathrm{Spin}(7)$-structure on a cone over a 3-Sasakian manifold. A continuous one-parameter family of solutions to this system is explicitly constructed; it corresponds to metrics with a special holonomy group, $\mathrm{SU}(4)$, which generalize Calabi's metrics.
Bibliography: 10 titles.
Keywords:
holonomy group, 3-Sasakian manifold.
@article{SM_2011_202_4_a0,
author = {Ya. V. Bazaikin and E. G. Malkovich},
title = {$\mathrm{Spin}(7)$-structures on complex linear bundles and explicit {Riemannian} metrics with holonomy group},
journal = {Sbornik. Mathematics},
pages = {467--493},
publisher = {mathdoc},
volume = {202},
number = {4},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/}
}
TY - JOUR
AU - Ya. V. Bazaikin
AU - E. G. Malkovich
TI - $\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group
JO - Sbornik. Mathematics
PY - 2011
SP - 467
EP - 493
VL - 202
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/
LA - en
ID - SM_2011_202_4_a0
ER -
%0 Journal Article
%A Ya. V. Bazaikin
%A E. G. Malkovich
%T $\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group
%J Sbornik. Mathematics
%D 2011
%P 467-493
%V 202
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/
%G en
%F SM_2011_202_4_a0
Ya. V. Bazaikin; E. G. Malkovich. $\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 467-493. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/