$\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group
Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 467-493 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of differential equations with 5 unknowns is fully investigated; this system is equivalent to the existence of a parallel $\mathrm{Spin}(7)$-structure on a cone over a 3-Sasakian manifold. A continuous one-parameter family of solutions to this system is explicitly constructed; it corresponds to metrics with a special holonomy group, $\mathrm{SU}(4)$, which generalize Calabi's metrics. Bibliography: 10 titles.
Keywords: holonomy group, 3-Sasakian manifold.
@article{SM_2011_202_4_a0,
     author = {Ya. V. Bazaikin and E. G. Malkovich},
     title = {$\mathrm{Spin}(7)$-structures on complex linear bundles and explicit {Riemannian} metrics with holonomy group},
     journal = {Sbornik. Mathematics},
     pages = {467--493},
     year = {2011},
     volume = {202},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/}
}
TY  - JOUR
AU  - Ya. V. Bazaikin
AU  - E. G. Malkovich
TI  - $\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 467
EP  - 493
VL  - 202
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/
LA  - en
ID  - SM_2011_202_4_a0
ER  - 
%0 Journal Article
%A Ya. V. Bazaikin
%A E. G. Malkovich
%T $\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group
%J Sbornik. Mathematics
%D 2011
%P 467-493
%V 202
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/
%G en
%F SM_2011_202_4_a0
Ya. V. Bazaikin; E. G. Malkovich. $\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 467-493. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/

[1] E. Calabi, “Métriques kählériennes et fibrés holomorphes”, Ann. Sci. École Norm. Sup. (4), 12:2 (1979), 269–294 | MR | Zbl

[2] D. D. Joyce, Compact manifolds with special holonomy, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2000 | MR | Zbl

[3] D. N. Page, C. N. Pope, “Inhomogeneous Einstein metrics on complex line bundles”, Classical Quantum Gravity, 4:2 (1987), 213–225 | DOI | MR | Zbl

[4] M. Cvetič, G. W. Gibbons, H. Lü, C. N. Pope, “Hyper-Kähler Calabi metrics, $L^2$ harmonic forms, resolved $\mathrm{M2}$-branes, and $\mathrm{AdS}_4/\mathrm{CFT}_3$ correspondence”, Nuclear Phys. B, 617:1–3 (2001), 151–197 | DOI | MR | Zbl

[5] H. Kanno, Yu. Yasui, “On $\mathrm{Spin}(7)$ holonomy metric based on $\mathrm{SU}(3)/\mathrm{U}(1)$. II”, J. Geom. Phys., 43:4 (2002), 310–326 | DOI | MR | Zbl

[6] Ya. V. Bazaikin, “On the new examples of complete noncompact $\mathrm{Spin}(7)$-holonomy metrics”, Siberian Math. J., 48:1 (2007), 8–25 | DOI | MR | Zbl

[7] Ya. V. Bazaikin, E. G. Malkovich, “$G_2$-holonomy metrics connected with a 3-Sasakian manifold”, Siberian Math. J., 49:1 (2008), 1–4 | DOI | MR | Zbl

[8] Ya. V. Bazaikin, “Noncompact Riemannian spaces with the holonomy group $\mathrm{Spin}(7)$ and 3-Sasakian manifolds”, Proc. Steklov Inst. Math., 263:1 (2008), 2–12 | DOI | MR | Zbl

[9] Ch. Boyer, K. Galicki, “3-Sasakian manifolds”, Surveys in differential geometry: essays on Einstein manifolds, Surv. Differ. Geom., 6, Int. Press, Boston, MA,, 1999, 123–184 | MR | Zbl

[10] A. Gray, “Weak holonomy groups”, Math. Z., 123:4 (1971), 290–300 | DOI | MR | Zbl