@article{SM_2011_202_4_a0,
author = {Ya. V. Bazaikin and E. G. Malkovich},
title = {$\mathrm{Spin}(7)$-structures on complex linear bundles and explicit {Riemannian} metrics with holonomy group},
journal = {Sbornik. Mathematics},
pages = {467--493},
year = {2011},
volume = {202},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/}
}
TY - JOUR
AU - Ya. V. Bazaikin
AU - E. G. Malkovich
TI - $\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group
JO - Sbornik. Mathematics
PY - 2011
SP - 467
EP - 493
VL - 202
IS - 4
UR - http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/
LA - en
ID - SM_2011_202_4_a0
ER -
%0 Journal Article
%A Ya. V. Bazaikin
%A E. G. Malkovich
%T $\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group
%J Sbornik. Mathematics
%D 2011
%P 467-493
%V 202
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/
%G en
%F SM_2011_202_4_a0
Ya. V. Bazaikin; E. G. Malkovich. $\mathrm{Spin}(7)$-structures on complex linear bundles and explicit Riemannian metrics with holonomy group. Sbornik. Mathematics, Tome 202 (2011) no. 4, pp. 467-493. http://geodesic.mathdoc.fr/item/SM_2011_202_4_a0/
[1] E. Calabi, “Métriques kählériennes et fibrés holomorphes”, Ann. Sci. École Norm. Sup. (4), 12:2 (1979), 269–294 | MR | Zbl
[2] D. D. Joyce, Compact manifolds with special holonomy, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2000 | MR | Zbl
[3] D. N. Page, C. N. Pope, “Inhomogeneous Einstein metrics on complex line bundles”, Classical Quantum Gravity, 4:2 (1987), 213–225 | DOI | MR | Zbl
[4] M. Cvetič, G. W. Gibbons, H. Lü, C. N. Pope, “Hyper-Kähler Calabi metrics, $L^2$ harmonic forms, resolved $\mathrm{M2}$-branes, and $\mathrm{AdS}_4/\mathrm{CFT}_3$ correspondence”, Nuclear Phys. B, 617:1–3 (2001), 151–197 | DOI | MR | Zbl
[5] H. Kanno, Yu. Yasui, “On $\mathrm{Spin}(7)$ holonomy metric based on $\mathrm{SU}(3)/\mathrm{U}(1)$. II”, J. Geom. Phys., 43:4 (2002), 310–326 | DOI | MR | Zbl
[6] Ya. V. Bazaikin, “On the new examples of complete noncompact $\mathrm{Spin}(7)$-holonomy metrics”, Siberian Math. J., 48:1 (2007), 8–25 | DOI | MR | Zbl
[7] Ya. V. Bazaikin, E. G. Malkovich, “$G_2$-holonomy metrics connected with a 3-Sasakian manifold”, Siberian Math. J., 49:1 (2008), 1–4 | DOI | MR | Zbl
[8] Ya. V. Bazaikin, “Noncompact Riemannian spaces with the holonomy group $\mathrm{Spin}(7)$ and 3-Sasakian manifolds”, Proc. Steklov Inst. Math., 263:1 (2008), 2–12 | DOI | MR | Zbl
[9] Ch. Boyer, K. Galicki, “3-Sasakian manifolds”, Surveys in differential geometry: essays on Einstein manifolds, Surv. Differ. Geom., 6, Int. Press, Boston, MA,, 1999, 123–184 | MR | Zbl
[10] A. Gray, “Weak holonomy groups”, Math. Z., 123:4 (1971), 290–300 | DOI | MR | Zbl