On a new compactification of moduli of vector bundles on a surface.
Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 413-465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new compactification for the scheme of moduli for Gieseker-stable vector bundles with prescribed Hilbert polynomial on the smooth projective polarized surface $(S,L)$ is constructed. We work over the field $k=\bar k$ of characteristic zero. Families of locally free sheaves on the surface $S$ are completed with locally free sheaves on schemes which are modifications of $S$. The Gieseker-Maruyama moduli space has a birational morphism onto the new moduli space. We propose the functor for families of pairs ‘polarized scheme-vector bundle’ with moduli space of such type. Bibliography: 16 titles.
Keywords: semistable coherent sheaves, moduli functor
Mots-clés : moduli space, algebraic surface.
@article{SM_2011_202_3_a4,
     author = {N. V. Timofeeva},
     title = {On a new compactification of moduli of vector bundles on a surface.},
     journal = {Sbornik. Mathematics},
     pages = {413--465},
     year = {2011},
     volume = {202},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - On a new compactification of moduli of vector bundles on a surface.
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 413
EP  - 465
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/
LA  - en
ID  - SM_2011_202_3_a4
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T On a new compactification of moduli of vector bundles on a surface.
%J Sbornik. Mathematics
%D 2011
%P 413-465
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/
%G en
%F SM_2011_202_3_a4
N. V. Timofeeva. On a new compactification of moduli of vector bundles on a surface.. Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 413-465. http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/

[1] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. of Math. (2), 106:1 (1977), 45–60 | DOI | MR | Zbl

[2] G. Ellingsrud, L. Göttsche, “Variation of moduli space and Donaldson invariants under change of polarization”, J. Reine Angew. Math., 467 (1995), 1–49 | MR | Zbl

[3] M. Maruyama, “Moduli of stable sheaves. II”, J. Math. Kyoto Univ., 18:3 (1978), 557–614 | MR | Zbl

[4] N. V. Timofeeva, “A compactification of the moduli variety of stable vector 2-bundles on a surface in the Hilbert scheme”, Math. Notes, 82:5–6 (2007), 677–690 | DOI | MR | Zbl

[5] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface”, Sb. Math., 199:7 (2008), 1051–1070 | DOI | MR

[6] N. V. Timofeeva, “On a new compactification of the moduli of vector bundles on a surface. II”, Sb. Math., 200:3 (2009), 405–427 | DOI | MR | Zbl

[7] N. Timofeeva, On degeneration of surface in Fitting compactification of moduli of stable vector bundles, arXiv: 0809.1148

[8] D. Gieseker, J. Li, “Moduli of high rank vector bundles over surfaces”, J. Amer. Math. Soc., 9:1 (1996), 107–151 | DOI | MR | Zbl

[9] K. G. O'Grady, “Moduli of vector bundles on projective surfaces: some basic results”, Invent. Math., 123:1 (1996), 141–207 | DOI | MR | Zbl

[10] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., E31, Vieweg, Braunschweig, 1997 | MR | Zbl

[11] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | MR | Zbl | Zbl

[12] D. Mumford, Lectures on curves on an algebraic surface, Princeton Univ. Press, Princeton, NJ, 1966 | MR | Zbl

[13] J. Le Potier, “Fibreś stables de rang 2 sur $\mathbb P_2 (\mathbb C)$”, Math. Ann., 241:3 (1979), 217–256 | DOI | MR | Zbl

[14] A. Grothendieck, “Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas, Quatrieme partie”, Inst. Hautes Études Sci. Publ. Math., 32 (1967), 5–361 | MR | Zbl

[15] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York–Berlin, 1995 | MR | Zbl

[16] D. Mumford, J. Fogarty, Geometric invariant theory, Ergeb. Math. Grenzgeb., 34, Springer-Verlag, Berlin, 1982 | MR | Zbl