On a new compactification of moduli of vector bundles on a surface.
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 413-465
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A new compactification for the scheme of moduli for Gieseker-stable vector bundles with prescribed Hilbert polynomial on the smooth projective polarized surface $(S,L)$ is constructed. We work over the field $k=\bar k$ of characteristic zero. Families of locally free sheaves on the surface $S$ are completed with locally free sheaves on schemes which are modifications of $S$. The Gieseker-Maruyama moduli space has a birational
morphism onto the new moduli space. We propose the functor for families of pairs ‘polarized scheme-vector bundle’ with moduli space of such type.
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
semistable coherent sheaves, moduli functor
Mots-clés : moduli space, algebraic surface.
                    
                  
                
                
                Mots-clés : moduli space, algebraic surface.
@article{SM_2011_202_3_a4,
     author = {N. V. Timofeeva},
     title = {On a new compactification of moduli of vector bundles on a surface.},
     journal = {Sbornik. Mathematics},
     pages = {413--465},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/}
}
                      
                      
                    N. V. Timofeeva. On a new compactification of moduli of vector bundles on a surface.. Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 413-465. http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/
