On a new compactification of moduli of vector bundles on a surface.
Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 413-465

Voir la notice de l'article provenant de la source Math-Net.Ru

A new compactification for the scheme of moduli for Gieseker-stable vector bundles with prescribed Hilbert polynomial on the smooth projective polarized surface $(S,L)$ is constructed. We work over the field $k=\bar k$ of characteristic zero. Families of locally free sheaves on the surface $S$ are completed with locally free sheaves on schemes which are modifications of $S$. The Gieseker-Maruyama moduli space has a birational morphism onto the new moduli space. We propose the functor for families of pairs ‘polarized scheme-vector bundle’ with moduli space of such type. Bibliography: 16 titles.
Keywords: semistable coherent sheaves, moduli functor
Mots-clés : moduli space, algebraic surface.
@article{SM_2011_202_3_a4,
     author = {N. V. Timofeeva},
     title = {On a new compactification of moduli of vector bundles on a surface.},
     journal = {Sbornik. Mathematics},
     pages = {413--465},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - On a new compactification of moduli of vector bundles on a surface.
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 413
EP  - 465
VL  - 202
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/
LA  - en
ID  - SM_2011_202_3_a4
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T On a new compactification of moduli of vector bundles on a surface.
%J Sbornik. Mathematics
%D 2011
%P 413-465
%V 202
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/
%G en
%F SM_2011_202_3_a4
N. V. Timofeeva. On a new compactification of moduli of vector bundles on a surface.. Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 413-465. http://geodesic.mathdoc.fr/item/SM_2011_202_3_a4/