The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian
Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 373-411

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the integrable Hamiltonian systems $$ (\mathbb C^2,\operatorname{Re}(dz\wedge dw),H=\operatorname{Re}f(z,w)) $$ with the additional first integral $F=\operatorname{Im}f$ which correspond to the complex Hamiltonian systems $(\mathbb C^2,dz\wedge dw,f(z,w))$ with a hyperelliptic Hamiltonian $f(z,w)=z^2+P_n(w)$, $n\in\mathbb N$. For $n\geqslant3$ the system has incomplete flows on any Lagrangian leaf $f^{-1}(a)$. The topology of the Lagrangian foliation of such systems in a small neighbourhood of any leaf $f^{-1}(a)$ is described in terms of the number $n$ and the combinatorial type of the leaf—the set of multiplicities of the critical points of the function $f$ that belong to the leaf. For odd $n$, a complex analogue of Liouville's theorem is obtained for those systems corresponding to polynomials $P_n(w)$ with simple real roots. In particular, a set of complex canonical variables analogous to action-angle variables is constructed in a small neighbourhood of the leaf $f^{-1}(0)$. Bibliography: 12 titles.
Keywords: integrable Hamiltonian system, Lagrangian foliation with singularities, leaf-wise equivalence of integrable systems, equivalence of holomorphic functions
Mots-clés : Liouville's theorem.
@article{SM_2011_202_3_a3,
     author = {E. A. Kudryavtseva and T. A. Lepskii},
     title = {The topology of {Lagrangian} foliations of integrable systems with hyperelliptic {Hamiltonian}},
     journal = {Sbornik. Mathematics},
     pages = {373--411},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_3_a3/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
AU  - T. A. Lepskii
TI  - The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 373
EP  - 411
VL  - 202
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_3_a3/
LA  - en
ID  - SM_2011_202_3_a3
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%A T. A. Lepskii
%T The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian
%J Sbornik. Mathematics
%D 2011
%P 373-411
%V 202
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_3_a3/
%G en
%F SM_2011_202_3_a3
E. A. Kudryavtseva; T. A. Lepskii. The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian. Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 373-411. http://geodesic.mathdoc.fr/item/SM_2011_202_3_a3/