The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 373-411
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the integrable Hamiltonian systems
$$
(\mathbb C^2,\operatorname{Re}(dz\wedge dw),H=\operatorname{Re}f(z,w))
$$
with the additional first integral $F=\operatorname{Im}f$ which correspond to the complex Hamiltonian systems
$(\mathbb C^2,dz\wedge dw,f(z,w))$ with a hyperelliptic Hamiltonian $f(z,w)=z^2+P_n(w)$, $n\in\mathbb N$. For $n\geqslant3$ the system has incomplete flows on any Lagrangian leaf $f^{-1}(a)$. The topology of the Lagrangian foliation of such systems in a small neighbourhood of any leaf $f^{-1}(a)$ is described in terms of the number $n$ and the combinatorial type of the leaf—the set of multiplicities of the critical points of the function $f$ that belong to the leaf. For odd $n$, a complex analogue of Liouville's theorem is obtained for those systems corresponding to polynomials $P_n(w)$ with simple real roots. In particular, a set of complex
canonical variables analogous to action-angle variables is constructed in a small neighbourhood of the leaf
$f^{-1}(0)$.
Bibliography: 12 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integrable Hamiltonian system, Lagrangian foliation with singularities, leaf-wise equivalence of integrable systems, equivalence of holomorphic functions
Mots-clés : Liouville's theorem.
                    
                  
                
                
                Mots-clés : Liouville's theorem.
@article{SM_2011_202_3_a3,
     author = {E. A. Kudryavtseva and T. A. Lepskii},
     title = {The topology of {Lagrangian} foliations of integrable systems with hyperelliptic {Hamiltonian}},
     journal = {Sbornik. Mathematics},
     pages = {373--411},
     publisher = {mathdoc},
     volume = {202},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_3_a3/}
}
                      
                      
                    TY - JOUR AU - E. A. Kudryavtseva AU - T. A. Lepskii TI - The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian JO - Sbornik. Mathematics PY - 2011 SP - 373 EP - 411 VL - 202 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_3_a3/ LA - en ID - SM_2011_202_3_a3 ER -
E. A. Kudryavtseva; T. A. Lepskii. The topology of Lagrangian foliations of integrable systems with hyperelliptic Hamiltonian. Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 373-411. http://geodesic.mathdoc.fr/item/SM_2011_202_3_a3/
