Zero-dimensional solenoidal base sets
Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 351-372 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the dynamics of the Smale-Vietoris (SV) diffeomorphisms concentrated in base solid tori is studied, and describe possible base sets in base solid tori. We also look at the topological structure of 3-manifolds admitting diffeomorphisms of class SV. Bibliography: 26 titles.
Keywords: zero-dimensional set, base set.
Mots-clés : solenoid
@article{SM_2011_202_3_a2,
     author = {E. V. Zhuzhoma and N. V. Isaenkova},
     title = {Zero-dimensional solenoidal base sets},
     journal = {Sbornik. Mathematics},
     pages = {351--372},
     year = {2011},
     volume = {202},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_3_a2/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - N. V. Isaenkova
TI  - Zero-dimensional solenoidal base sets
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 351
EP  - 372
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_3_a2/
LA  - en
ID  - SM_2011_202_3_a2
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A N. V. Isaenkova
%T Zero-dimensional solenoidal base sets
%J Sbornik. Mathematics
%D 2011
%P 351-372
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2011_202_3_a2/
%G en
%F SM_2011_202_3_a2
E. V. Zhuzhoma; N. V. Isaenkova. Zero-dimensional solenoidal base sets. Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 351-372. http://geodesic.mathdoc.fr/item/SM_2011_202_3_a2/

[1] L. Vietoris, “Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen”, Math. Ann., 97:1 (1927), 454–472 | DOI | MR | Zbl

[2] D. van Danzig, “Über topologisch homogene Kontinua”, Fund. Math., 15 (1930), 102–125 | Zbl

[3] F. Takens, “Multiplications in solenoids as hyperbolic attractors”, Topology Appl., 152:3 (2005), 219–225 | DOI | MR | Zbl

[4] V. V. Nemytskii, V. V. Stepanov, Qualitative theory of differential equations, Princeton Univ. Press, Princeton, NJ, 1960 | MR | MR | Zbl | Zbl

[5] I. Kan, “Strange attractors of uniform flows”, Trans. Amer. Math. Soc., 293:1 (1986), 135–159 | DOI | MR | Zbl

[6] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR | MR | Zbl

[7] D. V. Anosov, “Smooth dynamical systems. Elementary theory”, Dynamical systems, v. I, Encyclopaedia Math. Sci., 1, Springer-Verlag, Berlin, 1988, 149–233 | MR | Zbl | Zbl

[8] D. V. Anosov, V. V. Solodov, “Hyperbolic sets”, Dynamical systems, v. IX, Encyclopaedia Math. Sci., 66, Springer-Verlag, Berlin, 1995, 10–92 | MR | MR | Zbl | Zbl

[9] S. Kh. Aranson, G. R. Belitsky, E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[10] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1999 | MR | Zbl

[11] Yu. Ilyashenko, W. Li, Nonlocal bifurcations, Math. Surveys Monogr., 66, Amer. Math. Soc., Providence, RI, 1999 | MR | MR | Zbl

[12] D. V. Turaev, L. P. Shil'nikov, “Blue sky catastrophes”, Dokl. Math., 51:3 (1995), 404–407 | MR | Zbl

[13] H. G. Bothe, “The ambient structure of expanding attractors. II. Solenoids in 3-manifolds”, Math. Nachr., 112:1 (1983), 69–102 | DOI | MR | Zbl

[14] L. Block, “Diffeomorphisms obtained from endomorphisms”, Trans. Amer. Math. Soc., 214 (1975), 403–413 | DOI | MR | Zbl

[15] M. V. Jakobson, “On smooth mappings of the circle into itself”, Math. USSR-Sb., 14:2 (1971), 161–185 | DOI | MR | Zbl | Zbl

[16] J. M. Aarts, R. J. Fokkink, “The classification of solenoids”, Proc. Amer. Math. Soc., 111:4 (1991), 1161–1163 | DOI | MR | Zbl

[17] K. Kuratowski, Topology, v. 1, Academic Press, New York–London, 1968 | MR | MR | Zbl | Zbl

[18] R. F. Williams, “Expanding attractors”, Inst. Hautes Études Sci. Publ. Math., 43:1 (1974), 169–203 | DOI | MR | Zbl

[19] M. Shub, “Endomorphisms of compact differentiable manifolds”, Amer. J. Math., 91:1 (1969), 175–199 | DOI | MR | Zbl

[20] V. V. Prasolov, A. B. Sossinsky, Knots, links, braids and 3-manifolds, Transl. Math. Monogr., 154, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[21] V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “New relations for Morse–Smale systems with trivially embedded one-dimensional separatrices”, Sb. Math., 194:7 (2003), 979–1007 | DOI | MR | Zbl

[22] F. Waldhausen, “On irreducible 3-manifolds which are sufficiently large”, Ann. of Math. (2), 87:1 (1968), 56–88 | DOI | MR | Zbl

[23] W. Haken, “Theorie der Normalflächen”, Acta Math., 105:3–4 (1961), 245–375 | DOI | MR | Zbl

[24] C. D. Papakyriakopoulos, “On Dehn's lemma and the asphericity of knots”, Ann. of Math. (2), 66:1 (1957), 1–26 | DOI | MR | Zbl

[25] B. Jiang, Y. Ni, S. Wang, “3-manifolds that admit knotted solenoids as attractors”, Trans. Amer. Math. Soc., 356:11 (2004), 4371–4382 | DOI | MR | Zbl

[26] M. Hirsch, “A stable analytic foliation with only exceptional minimal sets”, Dynamical systems (Warwick, 1974), Lect. Notes in Math., 468, Springer-Verlag, Berlin, 1975, 9–10 | DOI | MR | Zbl