Pressure and equilibrium measures for actions of amenable groups on the space of configurations
Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 341-350 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The model of statistical physics on a countable amenable group $G$ is considered. For the natural action of $G$ on the space of configurations $S^G$, $|S|<\infty$, and for any closed invariant set $X\subset S^G$ we prove that there exists pressure which corresponds to a potential with finite norm on $X$ (in the sense of the limit with respect to any Følner sequence of sets in $G$). The existence of an equilibrium measure is established. Bibliography: 8 titles.
Keywords: thermodynamic formalism, pressure, equilibrium measure.
Mots-clés : amenable group
@article{SM_2011_202_3_a1,
     author = {A. I. Bufetov},
     title = {Pressure and equilibrium measures for actions of amenable groups on the space of configurations},
     journal = {Sbornik. Mathematics},
     pages = {341--350},
     year = {2011},
     volume = {202},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_3_a1/}
}
TY  - JOUR
AU  - A. I. Bufetov
TI  - Pressure and equilibrium measures for actions of amenable groups on the space of configurations
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 341
EP  - 350
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_3_a1/
LA  - en
ID  - SM_2011_202_3_a1
ER  - 
%0 Journal Article
%A A. I. Bufetov
%T Pressure and equilibrium measures for actions of amenable groups on the space of configurations
%J Sbornik. Mathematics
%D 2011
%P 341-350
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2011_202_3_a1/
%G en
%F SM_2011_202_3_a1
A. I. Bufetov. Pressure and equilibrium measures for actions of amenable groups on the space of configurations. Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 341-350. http://geodesic.mathdoc.fr/item/SM_2011_202_3_a1/

[1] A. M. Stepin, A. T. Tagi-Zade, “A variational characterization of the topological pressure of amenable transformation groups”, Soviet Math. Dokl., 22:2 (1980), 405–409 | MR | Zbl

[2] B. M. Gurevich, A. A. Tempelman, “Hausdorff dimension and pressure in the DLR thermodynamic formalism”, On Dobrushin's way. From probability theory to statistical physics, Amer. Math. Soc. Transl. Ser. 2, 198, Amer. Math. Soc., Providence, RI, 2000, 91–107 | MR | Zbl

[3] A. A. Tempelman, “Specific characteristics and variational principle for homogeneous random fields”, Z. Wahrsch. Verw. Gebiete, 65:3 (1984), 341–365 | DOI | MR | Zbl

[4] A. A. Tempelman, Ergodic theorems for group actions, Math. Appl., 78, Kluwer Acad. Publ., Dordrecht, 1992 | MR | MR | Zbl | Zbl

[5] D. Ruelle, Thermodynamic formalism. The mathematical structures of classical equilibrium. Statistical mechanics, Encyclopedia Math. Appl., 5, Addison-Wesley, Reading, MA, 1978 | MR | Zbl

[6] E. Lindenstrauss, “Pointwise theorems for amenable groups”, Invent. Math., 146:2 (2001), 259–295 | DOI | MR | Zbl

[7] D. S. Ornstein, B. Weiss, “Entropy and isomorphism theorems for actions of amenable groups”, J. Analyse Math., 48:1 (1987), 1–141 | DOI | MR | Zbl

[8] H.-O. Georgii, Gibbs measures and phase transitions, de Gruyter Stud. Math., 9, de Gruyter, Berlin, 1988 | MR | MR | Zbl