Mots-clés : amenable group
@article{SM_2011_202_3_a1,
author = {A. I. Bufetov},
title = {Pressure and equilibrium measures for actions of amenable groups on the space of configurations},
journal = {Sbornik. Mathematics},
pages = {341--350},
year = {2011},
volume = {202},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_3_a1/}
}
A. I. Bufetov. Pressure and equilibrium measures for actions of amenable groups on the space of configurations. Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 341-350. http://geodesic.mathdoc.fr/item/SM_2011_202_3_a1/
[1] A. M. Stepin, A. T. Tagi-Zade, “A variational characterization of the topological pressure of amenable transformation groups”, Soviet Math. Dokl., 22:2 (1980), 405–409 | MR | Zbl
[2] B. M. Gurevich, A. A. Tempelman, “Hausdorff dimension and pressure in the DLR thermodynamic formalism”, On Dobrushin's way. From probability theory to statistical physics, Amer. Math. Soc. Transl. Ser. 2, 198, Amer. Math. Soc., Providence, RI, 2000, 91–107 | MR | Zbl
[3] A. A. Tempelman, “Specific characteristics and variational principle for homogeneous random fields”, Z. Wahrsch. Verw. Gebiete, 65:3 (1984), 341–365 | DOI | MR | Zbl
[4] A. A. Tempelman, Ergodic theorems for group actions, Math. Appl., 78, Kluwer Acad. Publ., Dordrecht, 1992 | MR | MR | Zbl | Zbl
[5] D. Ruelle, Thermodynamic formalism. The mathematical structures of classical equilibrium. Statistical mechanics, Encyclopedia Math. Appl., 5, Addison-Wesley, Reading, MA, 1978 | MR | Zbl
[6] E. Lindenstrauss, “Pointwise theorems for amenable groups”, Invent. Math., 146:2 (2001), 259–295 | DOI | MR | Zbl
[7] D. S. Ornstein, B. Weiss, “Entropy and isomorphism theorems for actions of amenable groups”, J. Analyse Math., 48:1 (1987), 1–141 | DOI | MR | Zbl
[8] H.-O. Georgii, Gibbs measures and phase transitions, de Gruyter Stud. Math., 9, de Gruyter, Berlin, 1988 | MR | MR | Zbl