The linear theory of functional differential equations: existence theorems and the problem of pointwise completeness of the solutions
Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 307-340 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem and an initial-boundary value problems are considered for a linear functional differential equation of point type. A suitable scale of functional spaces is introduced and existence theorems for solutions are stated in terms of this scale, in a form analogous to Noether's theorem. A key fact is established for the initial boundary value problem: the space of classical solutions of the adjoint equation must be extended to include impulsive solutions. A test for the pointwise completeness of solutions is obtained. The results presented are based on a formalism developed by the author for this type of equation. Bibliography: 7 titles.
Keywords: functional differential equations, scale of function spaces, analogue of Noether's theorem, pointwise completeness of solutions.
Mots-clés : impulsive solutions
@article{SM_2011_202_3_a0,
     author = {L. A. Beklaryan},
     title = {The linear theory of functional differential equations: existence theorems and the problem of pointwise completeness of the solutions},
     journal = {Sbornik. Mathematics},
     pages = {307--340},
     year = {2011},
     volume = {202},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_3_a0/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - The linear theory of functional differential equations: existence theorems and the problem of pointwise completeness of the solutions
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 307
EP  - 340
VL  - 202
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_3_a0/
LA  - en
ID  - SM_2011_202_3_a0
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T The linear theory of functional differential equations: existence theorems and the problem of pointwise completeness of the solutions
%J Sbornik. Mathematics
%D 2011
%P 307-340
%V 202
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2011_202_3_a0/
%G en
%F SM_2011_202_3_a0
L. A. Beklaryan. The linear theory of functional differential equations: existence theorems and the problem of pointwise completeness of the solutions. Sbornik. Mathematics, Tome 202 (2011) no. 3, pp. 307-340. http://geodesic.mathdoc.fr/item/SM_2011_202_3_a0/

[1] L. A. Beklaryan, Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii. Gruppovoi podkhod, Faktorial Press, M., 2007

[2] J. K. Hale, S. M. Verduyn Lunel, Introduction to functional differential equations, Appl. Math. Sci., 99, Springer-Verlag, New York, NY, 1993 | MR | Zbl

[3] L. A. Beklaryan, M. B. Kruchenov, “On the solvability of a linear homogeneous functional-differential equation of point type”, Differ. Equ., 44:4 (2008), 453–463 | DOI | MR | Zbl

[4] Yu. D. Latushkin, A. M. Stëpin, “Weighted translation operators and linear extensions of dynamical systems”, Russian Math. Surveys, 46:2 (1991), 95–165 | DOI | MR | Zbl

[5] A. Antonevich, A. Lebedev, Functional-differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman, Harlow; Wiley, New York, 1994 | MR | Zbl

[6] V. Trénoguine, Analyse fonctionnelle, Mir, Moscow, 1985 | MR | MR | Zbl

[7] W. Rudin, Functional analysis, McGraw-Hill, New York–Düsseldorf–Johannesburg, 1973 | MR | MR | Zbl