. Bibliography: 10 titles.
@article{SM_2011_202_2_a4,
author = {P. A. Terekhin},
title = {Best approximation of functions in $L_p$ by polynomials on affine system},
journal = {Sbornik. Mathematics},
pages = {279--306},
year = {2011},
volume = {202},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_2_a4/}
}
P. A. Terekhin. Best approximation of functions in $L_p$ by polynomials on affine system. Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 279-306. http://geodesic.mathdoc.fr/item/SM_2011_202_2_a4/
[1] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme Erste Mitteilung”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR | Zbl
[2] N. K. Bari, “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | MR | Zbl
[3] P. L. Ulyanov, “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl
[4] B. I. Golubov, “Series with respect to the Haar system”, J. Soviet Math., 1:6 (1973), 704–726 | DOI | MR | Zbl | Zbl
[5] B. I. Golubov, “Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials”, Math. USSR-Sb., 16:2 (1972), 265–285 | DOI | MR | Zbl | Zbl
[6] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl
[7] P. A. Terekhin, “Convergence of biorthogonal series in the system of contractions and translations of functions in the spaces $L^p[0,1]$”, Math. Notes, 83:5 (2008), 657–674 | DOI | MR | Zbl
[8] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl
[9] P. A. Terekhin, “Multishifts in Hilbert spaces”, Funct. Anal. Appl., 39:1 (2005), 57–67 | DOI | MR | Zbl
[10] P. A. Terekhin, “Riesz bases generated by contractions and translations of a function on an interval”, Math. Notes, 72:3–4 (2002), 505–518 | DOI | MR | Zbl