Mots-clés : Ricci-flat Kähler metrics
@article{SM_2011_202_2_a3,
author = {I. V. Mykytyuk},
title = {Classification of {Ricci-flat} metrics on the cotangent bundles of compact rank-one symmetric spaces},
journal = {Sbornik. Mathematics},
pages = {257--278},
year = {2011},
volume = {202},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_2_a3/}
}
I. V. Mykytyuk. Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces. Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 257-278. http://geodesic.mathdoc.fr/item/SM_2011_202_2_a3/
[1] A. Dancer, A. Swann, “Hyperkähler metrics of cohomogeneity one”, J. Geom. Phys., 21:3 (1997), 218–230 | DOI | MR | Zbl
[2] E. Calabi, “Métriques kähleriennes et fibrés holomorphes”, Ann. Sci. École Norm. Sup. (4), 12:2 (1979), 269–294 | MR | Zbl
[3] A. Dancer, M. Y. Wang, “Kähler–Einstein metrics of cohomogeneity one”, Math. Ann., 312:3 (1998), 503–526 | DOI | MR | Zbl
[4] K. Higashijima, T. Kimura, M. Nitta, “Calabi–Yau manifolds of cohomogeneity one as complex line bundles”, Nuclear Phys. B, 645:3 (2002), 438–456 | DOI | MR | Zbl
[5] G. Tian, Sh. T. Yau, “Complete Kähler manifolds with zero Ricci curvature. I”, J. Amer. Math. Soc., 3:3 (1990), 579–609 | DOI | MR | Zbl
[6] G. Tian, Sh. T. Yau, “Complete Kähler manifolds with zero Ricci curvature. II”, Invent. Math., 106:1 (1991), 27–60 | DOI | MR | Zbl
[7] G. Tian, Sh. T. Yau, “Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry”, Mathematical aspects of string theory (San Diego, CA, 1986), Adv. Ser. Math. Phys., 1, World Sci. Publ., Singapore, 1987, 574–628 | MR | Zbl
[8] M. B. Stenzel, “Ricci-flat metrics on the complexification of a compact rank one symmetric space”, Manuscripta Math., 80:2 (1993), 151–163 | DOI | MR | Zbl
[9] Ph. Candelas, X. C. de la Ossa, “Comments on conifolds”, Nuclear Phys. B, 342:1 (1990), 246–268 | DOI | MR
[10] M. Cvetič, G. W. Gibbons, H. Lü, C. N. Pope, “Ricci-flat metrics, harmonic forms and brane resolutions”, Commun. Math. Phys., 232:3 (2003), 457–500 | DOI | MR | Zbl
[11] T.-Ch. Lee, “Complete Ricci flat Kähler metric on $\mathrm M^n_I$, $\mathrm M^{2n}_{II}$, $\mathrm M^{4n}_{III}$”, Pacific J. Math., 185:2 (1998), 315–326 | DOI | MR | Zbl
[12] G. Patrizio, P.-M. Wong, “Stein manifolds with compact symmetric center”, Math. Ann., 289:1 (1991), 355–382 | DOI | MR | Zbl
[13] J. M. Baptista, “Some special Kähler metrics on $\operatorname{SL}(2,{\mathbb C})$ and their holomorphic quantization”, J. Geom. Phys., 50:1–4 (2004), 1–27 | DOI | MR | Zbl
[14] A. S. Dancer, I. A. B. Strachan, “Einstein metrics on tangent bundles of spheres”, Classical Quantum Gravity, 19:18 (2002), 4663–4670 | DOI | MR | Zbl
[15] T. Eguchi, A. J. Hanson, “Asymptotically flat self-dual solutions to euclidean gravity”, Phys. Lett., 74:3 (1978), 249–251 | DOI
[16] I. V. Mykytyuk, “Kähler structures on the tangent bundle of rank one symmetric spaces”, Sb. Math., 192:11 (2001), 1677–1704 | DOI | MR | Zbl
[17] R. Szőke, “Adapted complex structures and Riemannian homogeneous spaces”, Complex analysis and applications (Warsaw, 1997), Ann. Polon. Math., 70, 1998, 215–220 | MR | Zbl
[18] V. Guillemin, S. Sternberg, “Geometric quantization and multiplicities of group representations”, Invent. Math., 67:3 (1982), 515–538 | DOI | MR | Zbl
[19] A. L. Onishchik, E. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl
[20] G. D. Mostow, “On covariant fiberings of Klein spaces”, Amer. J. Math., 77:2 (1955), 247–278 | DOI | MR | Zbl
[21] I. V. Mykytyuk, “Invariant Kähler structures on the cotangent bundles of compact symmetric spaces”, Nagoya Math. J., 169 (2003), 191–217 | MR | Zbl
[22] R. M. Aguilar, “Symplectic reduction and the homogeneous complex Monge–Ampère equation”, Ann. Global Anal. Geom., 19:4 (2001), 327–353 | DOI | MR | Zbl
[23] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York–San Francisco–London, 1978 | MR | Zbl
[24] V. Guillemin, M. Stenzel, “Grauert tubes and the homogeneous Monge–Ampère equation. II”, J. Differential Geom., 35:3 (1992), 627–641 | MR | Zbl
[25] A. V. Alekseevsky, D. V. Alekseevsky, “Riemannian $G$-manifold with one-dimensional orbit space”, Ann. Global Anal. Geom., 11:3 (1993), 197–211 | MR | Zbl
[26] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 2, Interscience Publ., New York–London–Sydney, 1969 | MR | MR | Zbl | Zbl