Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces
Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 257-278
Voir la notice de l'article provenant de la source Math-Net.Ru
All complete Ricci-flat Kähler $G$-invariant metrics $(\mathbf g,J,\Omega)$ on the cotangent bundle of a compact rank-one symmetric space $G/K$, $\dim G/K\geqslant 3$ (with the fixed Kähler form, the canonical symplectic structure $\Omega$), are classified. It is proved that the set of equivalence classes of such metrics can be parametrized by positive numbers. The representative of each class is constructed by using explicit expressions. An alternative description of these structures based on the Kähler reduction procedure is proposed. We show also that the complete Ricci-flat Kähler metrics, constructed by Stenzel, are diffeomorphic to these ones.
Bibliography: 26 titles.
Keywords:
Ricci-flat Kähler metrics, Stenzel manifolds.
@article{SM_2011_202_2_a3,
author = {I. V. Mykytyuk},
title = {Classification of {Ricci-flat} metrics on the cotangent bundles of compact rank-one symmetric spaces},
journal = {Sbornik. Mathematics},
pages = {257--278},
publisher = {mathdoc},
volume = {202},
number = {2},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_2_a3/}
}
TY - JOUR AU - I. V. Mykytyuk TI - Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces JO - Sbornik. Mathematics PY - 2011 SP - 257 EP - 278 VL - 202 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_2_a3/ LA - en ID - SM_2011_202_2_a3 ER -
I. V. Mykytyuk. Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces. Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 257-278. http://geodesic.mathdoc.fr/item/SM_2011_202_2_a3/