Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces
Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 257-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

All complete Ricci-flat Kähler $G$-invariant metrics $(\mathbf g,J,\Omega)$ on the cotangent bundle of a compact rank-one symmetric space $G/K$, $\dim G/K\geqslant 3$ (with the fixed Kähler form, the canonical symplectic structure $\Omega$), are classified. It is proved that the set of equivalence classes of such metrics can be parametrized by positive numbers. The representative of each class is constructed by using explicit expressions. An alternative description of these structures based on the Kähler reduction procedure is proposed. We show also that the complete Ricci-flat Kähler metrics, constructed by Stenzel, are diffeomorphic to these ones. Bibliography: 26 titles.
Keywords: Stenzel manifolds.
Mots-clés : Ricci-flat Kähler metrics
@article{SM_2011_202_2_a3,
     author = {I. V. Mykytyuk},
     title = {Classification of {Ricci-flat} metrics on the cotangent bundles of compact rank-one symmetric spaces},
     journal = {Sbornik. Mathematics},
     pages = {257--278},
     year = {2011},
     volume = {202},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_2_a3/}
}
TY  - JOUR
AU  - I. V. Mykytyuk
TI  - Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 257
EP  - 278
VL  - 202
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_2_a3/
LA  - en
ID  - SM_2011_202_2_a3
ER  - 
%0 Journal Article
%A I. V. Mykytyuk
%T Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces
%J Sbornik. Mathematics
%D 2011
%P 257-278
%V 202
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2011_202_2_a3/
%G en
%F SM_2011_202_2_a3
I. V. Mykytyuk. Classification of Ricci-flat metrics on the cotangent bundles of compact rank-one symmetric spaces. Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 257-278. http://geodesic.mathdoc.fr/item/SM_2011_202_2_a3/

[1] A. Dancer, A. Swann, “Hyperkähler metrics of cohomogeneity one”, J. Geom. Phys., 21:3 (1997), 218–230 | DOI | MR | Zbl

[2] E. Calabi, “Métriques kähleriennes et fibrés holomorphes”, Ann. Sci. École Norm. Sup. (4), 12:2 (1979), 269–294 | MR | Zbl

[3] A. Dancer, M. Y. Wang, “Kähler–Einstein metrics of cohomogeneity one”, Math. Ann., 312:3 (1998), 503–526 | DOI | MR | Zbl

[4] K. Higashijima, T. Kimura, M. Nitta, “Calabi–Yau manifolds of cohomogeneity one as complex line bundles”, Nuclear Phys. B, 645:3 (2002), 438–456 | DOI | MR | Zbl

[5] G. Tian, Sh. T. Yau, “Complete Kähler manifolds with zero Ricci curvature. I”, J. Amer. Math. Soc., 3:3 (1990), 579–609 | DOI | MR | Zbl

[6] G. Tian, Sh. T. Yau, “Complete Kähler manifolds with zero Ricci curvature. II”, Invent. Math., 106:1 (1991), 27–60 | DOI | MR | Zbl

[7] G. Tian, Sh. T. Yau, “Existence of Kähler–Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry”, Mathematical aspects of string theory (San Diego, CA, 1986), Adv. Ser. Math. Phys., 1, World Sci. Publ., Singapore, 1987, 574–628 | MR | Zbl

[8] M. B. Stenzel, “Ricci-flat metrics on the complexification of a compact rank one symmetric space”, Manuscripta Math., 80:2 (1993), 151–163 | DOI | MR | Zbl

[9] Ph. Candelas, X. C. de la Ossa, “Comments on conifolds”, Nuclear Phys. B, 342:1 (1990), 246–268 | DOI | MR

[10] M. Cvetič, G. W. Gibbons, H. Lü, C. N. Pope, “Ricci-flat metrics, harmonic forms and brane resolutions”, Commun. Math. Phys., 232:3 (2003), 457–500 | DOI | MR | Zbl

[11] T.-Ch. Lee, “Complete Ricci flat Kähler metric on $\mathrm M^n_I$, $\mathrm M^{2n}_{II}$, $\mathrm M^{4n}_{III}$”, Pacific J. Math., 185:2 (1998), 315–326 | DOI | MR | Zbl

[12] G. Patrizio, P.-M. Wong, “Stein manifolds with compact symmetric center”, Math. Ann., 289:1 (1991), 355–382 | DOI | MR | Zbl

[13] J. M. Baptista, “Some special Kähler metrics on $\operatorname{SL}(2,{\mathbb C})$ and their holomorphic quantization”, J. Geom. Phys., 50:1–4 (2004), 1–27 | DOI | MR | Zbl

[14] A. S. Dancer, I. A. B. Strachan, “Einstein metrics on tangent bundles of spheres”, Classical Quantum Gravity, 19:18 (2002), 4663–4670 | DOI | MR | Zbl

[15] T. Eguchi, A. J. Hanson, “Asymptotically flat self-dual solutions to euclidean gravity”, Phys. Lett., 74:3 (1978), 249–251 | DOI

[16] I. V. Mykytyuk, “Kähler structures on the tangent bundle of rank one symmetric spaces”, Sb. Math., 192:11 (2001), 1677–1704 | DOI | MR | Zbl

[17] R. Szőke, “Adapted complex structures and Riemannian homogeneous spaces”, Complex analysis and applications (Warsaw, 1997), Ann. Polon. Math., 70, 1998, 215–220 | MR | Zbl

[18] V. Guillemin, S. Sternberg, “Geometric quantization and multiplicities of group representations”, Invent. Math., 67:3 (1982), 515–538 | DOI | MR | Zbl

[19] A. L. Onishchik, E. B. Vinberg, Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1990 | MR | MR | Zbl | Zbl

[20] G. D. Mostow, “On covariant fiberings of Klein spaces”, Amer. J. Math., 77:2 (1955), 247–278 | DOI | MR | Zbl

[21] I. V. Mykytyuk, “Invariant Kähler structures on the cotangent bundles of compact symmetric spaces”, Nagoya Math. J., 169 (2003), 191–217 | MR | Zbl

[22] R. M. Aguilar, “Symplectic reduction and the homogeneous complex Monge–Ampère equation”, Ann. Global Anal. Geom., 19:4 (2001), 327–353 | DOI | MR | Zbl

[23] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., 80, Academic Press, New York–San Francisco–London, 1978 | MR | Zbl

[24] V. Guillemin, M. Stenzel, “Grauert tubes and the homogeneous Monge–Ampère equation. II”, J. Differential Geom., 35:3 (1992), 627–641 | MR | Zbl

[25] A. V. Alekseevsky, D. V. Alekseevsky, “Riemannian $G$-manifold with one-dimensional orbit space”, Ann. Global Anal. Geom., 11:3 (1993), 197–211 | MR | Zbl

[26] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, v. 2, Interscience Publ., New York–London–Sydney, 1969 | MR | MR | Zbl | Zbl