Three-dimensional quartics containing a plane
Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 207-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study Fano threefolds birationally equivalent to a quartic containing a plane. We prove that linear systems that have no maximal singularities at a singular point of the variety can have maximal singularities only along curves of degree one. We construct corresponding birational automorphisms. Bibliography: 10 titles.
Keywords: birational geometry, Fano varieties, method of maximal singularities.
@article{SM_2011_202_2_a1,
     author = {M. M. Grinenko},
     title = {Three-dimensional quartics containing a~plane},
     journal = {Sbornik. Mathematics},
     pages = {207--241},
     year = {2011},
     volume = {202},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_2_a1/}
}
TY  - JOUR
AU  - M. M. Grinenko
TI  - Three-dimensional quartics containing a plane
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 207
EP  - 241
VL  - 202
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_2_a1/
LA  - en
ID  - SM_2011_202_2_a1
ER  - 
%0 Journal Article
%A M. M. Grinenko
%T Three-dimensional quartics containing a plane
%J Sbornik. Mathematics
%D 2011
%P 207-241
%V 202
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2011_202_2_a1/
%G en
%F SM_2011_202_2_a1
M. M. Grinenko. Three-dimensional quartics containing a plane. Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 207-241. http://geodesic.mathdoc.fr/item/SM_2011_202_2_a1/

[1] V. A. Iskovskih, J. I. Manin, “Three-dimensional quartics and counterexamples to the Lüroth problem”, Math. USSR-Sb., 15:1 (1971), 141–166 | DOI | MR | Zbl | Zbl

[2] A. Corti, M. Mella, “Birational geometry of terminal quartic 3-folds, I”, Amer. J. Math., 126:4 (2004), 739–761 | DOI | MR | Zbl

[3] A. Corti, “Factoring birational maps of threefolds after Sarkisov”, J. Algebraic Geom., 4:2 (1995), 223–254 | MR | Zbl

[4] M. Kawakita, “Divisorial contractions in dimension three which contract divisors to smooth points”, Invent. Math., 145:1 (2001), 105–119 | DOI | MR | Zbl

[5] M. M. Grinenko, “New Mori structures on a double space of index 2”, Russian Math. Surveys, 59:3 (2004), 573–574 | DOI | MR | Zbl

[6] V. A. Iskovskikh, Lektsii po trekhmernym algebraicheskim mnogoobraziyam. Mnogoobraziya Fano, Izd-vo Mosk. un-ta, M., 1988 | Zbl

[7] A. V. Pukhlikov, “Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces”, Izv. Math., 62:1 (1998), 115–155 | DOI | MR | Zbl

[8] Yu. Kawamata, “Divisorial contractions to 3-dimensional terminal quotient singularities”, Higher dimensional complex varieties (Trento, Italy, 1994), de Gruyter, Berlin, 1996, 241–246 | MR | Zbl

[9] A. V. Pukhlikov, “Essentials of the method of maximal singularities”, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000, 73–100 | MR | Zbl

[10] A. V. Pukhlikov, “Birational automorphisms of a three-dimensional quartic with a quadratic singularity”, Math. USSR-Sb., 63:2 (1989), 457–482 | DOI | MR | Zbl | Zbl