Mots-clés : random matrices, multiple orthogonal polynomials
@article{SM_2011_202_2_a0,
author = {A. I. Aptekarev and V. G. Lysov and D. N. Tulyakov},
title = {Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials},
journal = {Sbornik. Mathematics},
pages = {155--206},
year = {2011},
volume = {202},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_2_a0/}
}
TY - JOUR AU - A. I. Aptekarev AU - V. G. Lysov AU - D. N. Tulyakov TI - Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials JO - Sbornik. Mathematics PY - 2011 SP - 155 EP - 206 VL - 202 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_2011_202_2_a0/ LA - en ID - SM_2011_202_2_a0 ER -
%0 Journal Article %A A. I. Aptekarev %A V. G. Lysov %A D. N. Tulyakov %T Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials %J Sbornik. Mathematics %D 2011 %P 155-206 %V 202 %N 2 %U http://geodesic.mathdoc.fr/item/SM_2011_202_2_a0/ %G en %F SM_2011_202_2_a0
A. I. Aptekarev; V. G. Lysov; D. N. Tulyakov. Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials. Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 155-206. http://geodesic.mathdoc.fr/item/SM_2011_202_2_a0/
[1] L. A. Pastur, “On the spectrum of random matrices”, Theoret. and Math. Phys., 10:1 (1972), 67–74 | DOI | MR
[2] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source”, Theoret. and Math. Phys., 159:1 (2009), 448–468 | DOI | MR | Zbl
[3] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 2004, no. 3, 109–129 | DOI | MR | Zbl
[4] P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. Part I”, Comm. Math. Phys., 252:1–3 (2004), 43–76 | DOI | MR | Zbl
[5] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl
[6] P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. Part III. Double scaling limit”, Comm. Math. Phys., 270:2 (2007), 481–517 | DOI | MR | Zbl
[7] K. T.-R. McLaughlin, “Asymptotic analysis of random matrices with external source and a family of algebraic curves”, Nonlinearity, 20:7 (2007), 1547–1571 | DOI | MR | Zbl
[8] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl
[9] A. I. Aptekarev, “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1–2 (1998), 423–447 | DOI | MR | Zbl
[10] A. I. Aptekarev, Yu. G. Rykov, “A variational representation of solutions to a certain hyperbolic system of equations by using a logarithmic potential in the external field”, Dokl. Math., 74:1 (2006), 477–479 | DOI | MR | Zbl
[11] A. I. Aptekarev, Yu. G. Rykov, “On the variational representation of solutions to some quasilinear equations and systems of hyperbolic type on the basis of potential theory”, Russ. J. Math. Phys., 13:1 (2006), 4–12 | DOI | MR | Zbl
[12] A. S. Fokas, A. R. Its, A. V. Kitaev, “The isomonodromy approach to matrix models in 2D quantum gravity”, Comm. Math. Phys., 147:2 (1992), 395–430 | DOI | MR | Zbl
[13] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[14] W. Van Assche, J. S. Geronimo, A. B. J. Kuijlaars, “Riemann–Hilbert problems for multiple orthogonal polynomials”, Special functions 2000: current perspective and future directions (Tempe, AZ, USA, 2000), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 23–59 | MR | Zbl
[15] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)”, Int. Math. Res. Pap. IMRP, 2008, ID 007 | DOI | MR | Zbl
[16] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl
[17] V. Lysov, F. Wielonsky, “Strong asymptotics for multiple Laguerre polynomials”, Constr. Approx., 28:1 (2008), 61–111 | DOI | MR | Zbl
[18] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl
[19] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl
[20] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl
[21] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | MR | Zbl
[22] M. A. Lapik, “Support of the extremal measure in a vector equilibrium problem”, Sb. Math., 197:8 (2006), 1205–1221 | DOI | MR | Zbl
[23] M. Duits, A. B. J. Kuijlaars, “Universality in the two-matrix model: a Riemann–Hilbert steepest-descent analysis”, Comm. Pure Appl. Math., 62:8 (2009), 1076–1153 | DOI | MR | Zbl
[24] A. B. J. Kuijlaars, A. Martinez-Finkelshtein, F. Wielonsky, “Non-intersecting squared bessel paths and multiple orthogonal polynomials for modified bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl
[25] P. M. Bleher, S. Delvaux, A. B. J. Kuijlaars, Random matrix model with external source and a constrained vector equilibrium problem, arXiv: 1001.1238
[26] Y. V. Fyodorov, Eu. Strahov, “An exact formula for general spectral correlation function of random Hermitian matrices”, J. Phys. A, 36:12 (2003), 3203–3213 | DOI | MR | Zbl
[27] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl
[28] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl
[29] V. N. Sorokin, “Generalized Pollaczek polynomials”, Sb. Math., 200:4 (2009), 577–595 | DOI | MR | Zbl
[30] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl
[31] P. D. Dragnev, E. B. Saff, “Constrained energy problems with applications to orthogonal polynomials of a discrete variable”, J. Anal. Math., 72:1 (1997), 223–259 | DOI | MR | Zbl
[32] A. B. J. Kuijlaars, E. A. Rakhmanov, “Zero distributions for discrete orthogonal polynomials”, J. Comput. Appl. Math., 99:1–2 (1998), 255–274 | DOI | MR | Zbl
[33] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl
[34] P. M. Bleher, A. R. Its, “Double scaling limit in the random matrix model: The Riemann–Hilbert approach”, Comm. Pure Appl. Math., 56:4 (2003), 433–516 | DOI | MR | Zbl
[35] T. Claeys, A. B. J. Kuijlaars, “Universality of the double scaling limit in random matrix models”, Comm. Pure Appl. Math., 59:11 (2006), 1573–1603 | DOI | MR | Zbl