Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials
Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 155-206 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Ensembles of random Hermitian matrices with a distribution measure defined by an anharmonic potential perturbed by an external source are considered. The limiting characteristics of the eigenvalue distribution of the matrices in these ensembles are related to the asymptotic behaviour of a certain system of multiple orthogonal polynomials. Strong asymptotic formulae are derived for this system. As a consequence, for matrices in this ensemble the limit mean eigenvalue density is found, and a variational principle is proposed to characterize this density. Bibliography: 35 titles.
Keywords: strong asymptotics, matrix Riemann-Hilbert problem, extremal problems in the theory of logarithmic potentials.
Mots-clés : random matrices, multiple orthogonal polynomials
@article{SM_2011_202_2_a0,
     author = {A. I. Aptekarev and V. G. Lysov and D. N. Tulyakov},
     title = {Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials},
     journal = {Sbornik. Mathematics},
     pages = {155--206},
     year = {2011},
     volume = {202},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_2_a0/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - V. G. Lysov
AU  - D. N. Tulyakov
TI  - Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 155
EP  - 206
VL  - 202
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_2_a0/
LA  - en
ID  - SM_2011_202_2_a0
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A V. G. Lysov
%A D. N. Tulyakov
%T Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials
%J Sbornik. Mathematics
%D 2011
%P 155-206
%V 202
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2011_202_2_a0/
%G en
%F SM_2011_202_2_a0
A. I. Aptekarev; V. G. Lysov; D. N. Tulyakov. Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials. Sbornik. Mathematics, Tome 202 (2011) no. 2, pp. 155-206. http://geodesic.mathdoc.fr/item/SM_2011_202_2_a0/

[1] L. A. Pastur, “On the spectrum of random matrices”, Theoret. and Math. Phys., 10:1 (1972), 67–74 | DOI | MR

[2] A. I. Aptekarev, V. G. Lysov, D. N. Tulyakov, “Global eigenvalue distribution regime of random matrices with an anharmonic potential and an external source”, Theoret. and Math. Phys., 159:1 (2009), 448–468 | DOI | MR | Zbl

[3] P. M. Bleher, A. B. J. Kuijlaars, “Random matrices with external source and multiple orthogonal polynomials”, Int. Math. Res. Not., 2004, no. 3, 109–129 | DOI | MR | Zbl

[4] P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. Part I”, Comm. Math. Phys., 252:1–3 (2004), 43–76 | DOI | MR | Zbl

[5] A. I. Aptekarev, P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. Part II”, Comm. Math. Phys., 259:2 (2005), 367–389 | DOI | MR | Zbl

[6] P. M. Bleher, A. B. J. Kuijlaars, “Large $n$ limit of Gaussian random matrices with external source. Part III. Double scaling limit”, Comm. Math. Phys., 270:2 (2007), 481–517 | DOI | MR | Zbl

[7] K. T.-R. McLaughlin, “Asymptotic analysis of random matrices with external source and a family of algebraic curves”, Nonlinearity, 20:7 (2007), 1547–1571 | DOI | MR | Zbl

[8] J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J. Approx. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[9] A. I. Aptekarev, “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99:1–2 (1998), 423–447 | DOI | MR | Zbl

[10] A. I. Aptekarev, Yu. G. Rykov, “A variational representation of solutions to a certain hyperbolic system of equations by using a logarithmic potential in the external field”, Dokl. Math., 74:1 (2006), 477–479 | DOI | MR | Zbl

[11] A. I. Aptekarev, Yu. G. Rykov, “On the variational representation of solutions to some quasilinear equations and systems of hyperbolic type on the basis of potential theory”, Russ. J. Math. Phys., 13:1 (2006), 4–12 | DOI | MR | Zbl

[12] A. S. Fokas, A. R. Its, A. V. Kitaev, “The isomonodromy approach to matrix models in 2D quantum gravity”, Comm. Math. Phys., 147:2 (1992), 395–430 | DOI | MR | Zbl

[13] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[14] W. Van Assche, J. S. Geronimo, A. B. J. Kuijlaars, “Riemann–Hilbert problems for multiple orthogonal polynomials”, Special functions 2000: current perspective and future directions (Tempe, AZ, USA, 2000), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 23–59 | MR | Zbl

[15] A. I. Aptekarev, A. B. J. Kuijlaars, W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0)”, Int. Math. Res. Pap. IMRP, 2008, ID 007 | DOI | MR | Zbl

[16] V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840 | DOI | MR | Zbl

[17] V. Lysov, F. Wielonsky, “Strong asymptotics for multiple Laguerre polynomials”, Constr. Approx., 28:1 (2008), 61–111 | DOI | MR | Zbl

[18] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl

[19] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl

[20] A. A. Gonchar, E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl

[21] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | MR | Zbl

[22] M. A. Lapik, “Support of the extremal measure in a vector equilibrium problem”, Sb. Math., 197:8 (2006), 1205–1221 | DOI | MR | Zbl

[23] M. Duits, A. B. J. Kuijlaars, “Universality in the two-matrix model: a Riemann–Hilbert steepest-descent analysis”, Comm. Pure Appl. Math., 62:8 (2009), 1076–1153 | DOI | MR | Zbl

[24] A. B. J. Kuijlaars, A. Martinez-Finkelshtein, F. Wielonsky, “Non-intersecting squared bessel paths and multiple orthogonal polynomials for modified bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | DOI | MR | Zbl

[25] P. M. Bleher, S. Delvaux, A. B. J. Kuijlaars, Random matrix model with external source and a constrained vector equilibrium problem, arXiv: 1001.1238

[26] Y. V. Fyodorov, Eu. Strahov, “An exact formula for general spectral correlation function of random Hermitian matrices”, J. Phys. A, 36:12 (2003), 3203–3213 | DOI | MR | Zbl

[27] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[28] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl

[29] V. N. Sorokin, “Generalized Pollaczek polynomials”, Sb. Math., 200:4 (2009), 577–595 | DOI | MR | Zbl

[30] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl

[31] P. D. Dragnev, E. B. Saff, “Constrained energy problems with applications to orthogonal polynomials of a discrete variable”, J. Anal. Math., 72:1 (1997), 223–259 | DOI | MR | Zbl

[32] A. B. J. Kuijlaars, E. A. Rakhmanov, “Zero distributions for discrete orthogonal polynomials”, J. Comput. Appl. Math., 99:1–2 (1998), 255–274 | DOI | MR | Zbl

[33] A. I. Aptekarev, “Sharp constants for rational approximations of analytic functions”, Sb. Math., 193:1 (2002), 1–72 | DOI | MR | Zbl

[34] P. M. Bleher, A. R. Its, “Double scaling limit in the random matrix model: The Riemann–Hilbert approach”, Comm. Pure Appl. Math., 56:4 (2003), 433–516 | DOI | MR | Zbl

[35] T. Claeys, A. B. J. Kuijlaars, “Universality of the double scaling limit in random matrix models”, Comm. Pure Appl. Math., 59:11 (2006), 1573–1603 | DOI | MR | Zbl