Closed locally minimal nets on tetrahedra
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 135-153

Voir la notice de l'article provenant de la source Math-Net.Ru

Closed locally minimal networks are in a sense a generalization of closed geodesics. A complete classification is known of closed locally minimal networks on regular (and generally any equihedral) tetrahedra. In the present paper certain necessary and certain sufficient conditions are given for at least one closed locally minimal network to exist on a given non-equihedral tetrahedron. Bibliography: 6 titles.
Keywords: minimal network, non-equihedral tetrahedron.
@article{SM_2011_202_1_a6,
     author = {N. P. Strelkova},
     title = {Closed locally minimal nets on tetrahedra},
     journal = {Sbornik. Mathematics},
     pages = {135--153},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a6/}
}
TY  - JOUR
AU  - N. P. Strelkova
TI  - Closed locally minimal nets on tetrahedra
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 135
EP  - 153
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_1_a6/
LA  - en
ID  - SM_2011_202_1_a6
ER  - 
%0 Journal Article
%A N. P. Strelkova
%T Closed locally minimal nets on tetrahedra
%J Sbornik. Mathematics
%D 2011
%P 135-153
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_1_a6/
%G en
%F SM_2011_202_1_a6
N. P. Strelkova. Closed locally minimal nets on tetrahedra. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 135-153. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a6/