The asymptotics of Hermite-Padé polynomials for two Markov-type functions
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 127-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem is solved on the limit distribution of the zeros of polynomials which are simultaneously orthogonal on two intervals $\Delta_1$ and $\Delta_2$ of the real line such that $\Delta_1\subset\Delta_2$, under the assumption that the ratio of the weight functions on $\Delta_1$ is a Markov-type function generated by a third interval $\Delta_3$ not intersecting $\overset{\circ}\Delta_2$. Bibliography: 11 titles.
Keywords: simultaneously orthogonal polynomials, weak asymptotics, vector equilibrium problem.
Mots-clés : Hermite-Padé approximants
@article{SM_2011_202_1_a5,
     author = {E. A. Rakhmanov},
     title = {The asymptotics of {Hermite-Pad\'e} polynomials for two {Markov-type} functions},
     journal = {Sbornik. Mathematics},
     pages = {127--134},
     year = {2011},
     volume = {202},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
TI  - The asymptotics of Hermite-Padé polynomials for two Markov-type functions
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 127
EP  - 134
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/
LA  - en
ID  - SM_2011_202_1_a5
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%T The asymptotics of Hermite-Padé polynomials for two Markov-type functions
%J Sbornik. Mathematics
%D 2011
%P 127-134
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/
%G en
%F SM_2011_202_1_a5
E. A. Rakhmanov. The asymptotics of Hermite-Padé polynomials for two Markov-type functions. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/

[1] A. A. Gonchar, E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type”, Proc. Steklov Inst. Math., 157 (1983), 31–50 | MR | Zbl | Zbl

[2] E. M. Nikishin, V. N. Sorokin, Rational approximations and orthogonality, Transl. Math. Monogr., 92, Amer. Math. Soc., Providence, RI, 1991 | MR | MR | Zbl | Zbl

[3] A. A. Gonchar, E. A. Rakhmanov, V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions”, Sb. Math., 188:5 (1997), 671–696 | DOI | MR | Zbl

[4] H. Stahl, “Asymptotics of Hermite–Padé polynomials and related convergence results – a summary of results”, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53 | MR | Zbl

[5] E. M. Nikišin, “On simultaneous Padé approximants”, Math. USSR-Sb., 41:4 (1982), 409–425 | DOI | MR | Zbl | Zbl

[6] E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations”, Soviet Math. (Iz. VUZ), 30:2 (1986), 43–52 | MR | Zbl

[7] A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points”, Dokl. Math., 78:2 (2008), 717–719 | DOI | MR | Zbl

[8] A. I. Aptekarev, V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants”, Sb. Math., 201:2 (2010), 183–234 | DOI | MR | Zbl

[9] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions”, Math. USSR-Sb., 62:2 (1989), 305–348 | DOI | MR | Zbl | Zbl

[10] A. A. Gonchar, E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl