The asymptotics of Hermite-Pad\'e polynomials for two Markov-type functions
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 127-134

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem is solved on the limit distribution of the zeros of polynomials which are simultaneously orthogonal on two intervals $\Delta_1$ and $\Delta_2$ of the real line such that $\Delta_1\subset\Delta_2$, under the assumption that the ratio of the weight functions on $\Delta_1$ is a Markov-type function generated by a third interval $\Delta_3$ not intersecting $\overset{\circ}\Delta_2$. Bibliography: 11 titles.
Keywords: simultaneously orthogonal polynomials, weak asymptotics, vector equilibrium problem.
Mots-clés : Hermite-Padé approximants
@article{SM_2011_202_1_a5,
     author = {E. A. Rakhmanov},
     title = {The asymptotics of {Hermite-Pad\'e} polynomials for two {Markov-type} functions},
     journal = {Sbornik. Mathematics},
     pages = {127--134},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/}
}
TY  - JOUR
AU  - E. A. Rakhmanov
TI  - The asymptotics of Hermite-Pad\'e polynomials for two Markov-type functions
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 127
EP  - 134
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/
LA  - en
ID  - SM_2011_202_1_a5
ER  - 
%0 Journal Article
%A E. A. Rakhmanov
%T The asymptotics of Hermite-Pad\'e polynomials for two Markov-type functions
%J Sbornik. Mathematics
%D 2011
%P 127-134
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/
%G en
%F SM_2011_202_1_a5
E. A. Rakhmanov. The asymptotics of Hermite-Pad\'e polynomials for two Markov-type functions. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/