The asymptotics of Hermite-Pad\'e polynomials for two Markov-type functions
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 127-134
Voir la notice de l'article provenant de la source Math-Net.Ru
A problem is solved on the limit distribution of the zeros of polynomials which are simultaneously orthogonal on two intervals $\Delta_1$ and $\Delta_2$ of the real line such that $\Delta_1\subset\Delta_2$, under the assumption that the ratio of the weight functions on $\Delta_1$ is a Markov-type function generated by a third interval $\Delta_3$ not intersecting $\overset{\circ}\Delta_2$.
Bibliography: 11 titles.
Keywords:
simultaneously orthogonal polynomials, weak asymptotics, vector equilibrium problem.
Mots-clés : Hermite-Padé approximants
Mots-clés : Hermite-Padé approximants
@article{SM_2011_202_1_a5,
author = {E. A. Rakhmanov},
title = {The asymptotics of {Hermite-Pad\'e} polynomials for two {Markov-type} functions},
journal = {Sbornik. Mathematics},
pages = {127--134},
publisher = {mathdoc},
volume = {202},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/}
}
E. A. Rakhmanov. The asymptotics of Hermite-Pad\'e polynomials for two Markov-type functions. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a5/