Invariant functions for the Lyapunov exponents of random matrices
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 101-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach to the study of Lyapunov exponents of random matrices is presented. We prove that any family of nonnegative $(d\times d)$-matrices has a continuous concave invariant functional on $\mathbb R^d_+$. Under some standard assumptions on the matrices, this functional is strictly positive, and the coefficient corresponding to it is equal to the largest Lyapunov exponent. As a corollary we obtain asymptotics for the expected value of the logarithm of norms of matrix products and of their spectral radii. Another corollary gives new upper and lower bounds for the Lyapunov exponent, and an algorithm for computing it for families of nonnegative matrices. We consider possible extensions of our results to general nonnegative matrix families and present several applications and examples. Bibliography: 29 titles.
Keywords: Lyapunov exponents, invariant functions, concave homogeneous functionals, fixed point, asymptotics.
Mots-clés : random matrices
@article{SM_2011_202_1_a4,
     author = {V. Yu. Protasov},
     title = {Invariant functions for the {Lyapunov} exponents of random matrices},
     journal = {Sbornik. Mathematics},
     pages = {101--126},
     year = {2011},
     volume = {202},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a4/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Invariant functions for the Lyapunov exponents of random matrices
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 101
EP  - 126
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_1_a4/
LA  - en
ID  - SM_2011_202_1_a4
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Invariant functions for the Lyapunov exponents of random matrices
%J Sbornik. Mathematics
%D 2011
%P 101-126
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2011_202_1_a4/
%G en
%F SM_2011_202_1_a4
V. Yu. Protasov. Invariant functions for the Lyapunov exponents of random matrices. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 101-126. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a4/

[1] H. Furstenberg, H. Kesten, “Products of random matrices”, Ann. Math. Statist., 31:2 (1960), 457–469 | DOI | MR | Zbl

[2] V. I. Oseledets, “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Mosc. Math. Soc., 19 (1968), 197–231 | MR | Zbl

[3] J. C. Watkins, “Limit theorems for products of random matrices: a comparison of two points of view”, Random matrices and their applications (Brunswick, Maine, 1984), Contemp. Math., 50, Amer. Math. Soc., Providence, RI, 1986, 5–22 | MR | Zbl

[4] V. N. Tutubalin, “On limit theorems for the product of random matrices”, Theory Probab. Appl., 10:1 (1965), 15–27 | DOI | MR | Zbl

[5] V. N. Tutubalin, “Approximation of probability measures in variation and products of random matrices”, Theory Probab. Appl., 13:1 (1968), 65–83 | DOI | MR | Zbl

[6] V. N. Tutubalin, “Some theorems of the type of the strong law of large numbers”, Theory Probab. Appl., 14:2 (1969), 313–319 | DOI | MR | Zbl | Zbl

[7] E. Le Page, “Théorèmes limites pour les produits de matrices aléatoires”, Probability measures on groups (Oberwolfach, 1981), Lecture Notes in Math., 928, Springer-Verlag, Berlin–New York, 1982, 258–303 | DOI | MR | Zbl

[8] H. Ishitani, “A central limit theorem for the subadditive process and its application to products of random matrices”, Publ. Res. Inst. Math. Sci., 12:3 (1976), 565–575 | DOI | MR | Zbl

[9] H. Hennon, “Limit theorems for products of positive random matrices”, Ann. Probab., 25:4 (1997), 1545–1587 | DOI | MR | Zbl

[10] Y. Peres, “Domains of analytic continuation for the top Lyapunov exponent”, Ann. Inst. H. Poincaré Probab. Statist., 28:1 (1992), 131–148 | MR | Zbl

[11] A. V. Letchikov, “Conditional limit theorem for products of random matrices”, Sb. Math., 186:3 (1995), 371–389 | DOI | MR | Zbl

[12] I. Ya. Gol'dsheid, G. A. Margulis, “Lyapunov indices of a product of random matrices”, Russian Math. Surveys, 44:5 (1989), 11–71 | DOI | MR | Zbl | Zbl

[13] L. Gerencsér, G. Michaletzky, Z. Orlovits, “Stability of block-triangular stationary random matrices”, Systems Control Lett., 57:8 (2008), 620–625 | DOI | MR | Zbl

[14] V. Yu. Protasov, “Fractal curves and wavelets”, Izv. Math., 70:5 (2006), 975–1013 | DOI | MR | Zbl

[15] R. M. Jungers, V. Yu. Protasov, V. D. Blondel, “Overlap-free words and spectra of matrices”, Theoret. Comput. Sci., 410:38–40 (2009), 3670–3684 | DOI | MR | Zbl

[16] E. S. Key, “Lower bounds for the maximal Lyapunov exponent”, J. Theoret. Probab., 3:3 (1990), 477–488 | DOI | MR | Zbl

[17] R. Gharavi, V. Anantharam, “An upper bound for the largest Lyapunov exponent of a Markovian product of nonnegative matrices”, Theoret. Comput. Sci., 332:1–3 (2005), 543–557 | DOI | MR | Zbl

[18] L. Dieci, E. S. Van Vleck, “Lyapunov spectral intervals: theory and computation”, SIAM J. Numer. Anal., 40:2 (2002), 516–542 | DOI | MR | Zbl

[19] L. Dieci, E. S. Van Vleck, “Perturbation theory for approximation of Lyapunov exponents by $QR$ methods”, J. Dynam. Differential Equations, 18:3 (2006), 815–840 | DOI | MR | Zbl

[20] W.-J. Beyn, A. Lust, “A hybrid method for computing Lyapunov exponents”, Numer. Math., 113:3 (2009), 357–375 | DOI | MR | Zbl

[21] J. N. Tsitsiklis, V. D. Blondel, “The Lyapunov exponent and joint spectral radius of pairs of matrices are hard – when not impossible – to compute and to approximate”, Math. Control Signals Systems, 10:1 (1997), 31–40 | DOI | MR | Zbl

[22] N. E. Barabanov, “Lyapunov indicator of discrete inclusions. I”, Automat. Remote Control, 49:2 (1988), 152–157 | MR | MR | MR | Zbl | Zbl | Zbl

[23] V. Yu. Protasov, “Sovmestnyi spektralnyi radius i invariantnye mnozhestva lineinykh operatorov”, Fundament. i prikl. matem., 2:1 (1996), 205–231 | MR | Zbl

[24] V. Yu. Protasov, “Extremal $L_p$-norms of linear operators and self-similar functions”, Linear Algebra Appl., 428:10 (2008), 2339–2356 | DOI | MR | Zbl

[25] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz, RKhD, M.–Izhevsk, 2009

[26] St. Boyd, L. Vandenberghe, Convex optimization, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl

[27] V. Romanovsky, “Un théorème sur les zéros des matrices non négatives”, Bull. Soc. Math. France, 61 (1933), 213–219 | MR | Zbl

[28] R. A. Horn, Ch. R. Johnson, Matrix analysis, Cambridge Univ. Press, Cambridge, 1985 | MR | MR | Zbl | Zbl

[29] V. Yu. Protasov, “Polugruppy neotritsatelnykh matrits”, UMN, 65:6 (2010), 191–192