Triviality of vector bundles on twisted ind-Grassmannians
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 61-99
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Twisted ind-Grassmannians are ind-varieties $\mathbf G$ obtained as direct limits of Grassmannians 
$G(i_m,V^{n_m})$ for $m\in\mathbb Z_{>0}$ under embeddings of degree greater than $1$. It has been conjectured by Donin and Penkov (2003) that any vector bundle of finite rank on a twisted ind-Grassmannian is trivial. We prove this conjecture.
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
ind-variety, twisted ind-Grassmannian, vector bundle.
                    
                    
                    
                  
                
                
                @article{SM_2011_202_1_a3,
     author = {I. B. Penkov and A. S. Tikhomirov},
     title = {Triviality of vector bundles on twisted {ind-Grassmannians}},
     journal = {Sbornik. Mathematics},
     pages = {61--99},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a3/}
}
                      
                      
                    I. B. Penkov; A. S. Tikhomirov. Triviality of vector bundles on twisted ind-Grassmannians. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 61-99. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a3/
