Triviality of vector bundles on twisted ind-Grassmannians
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 61-99
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Twisted ind-Grassmannians are ind-varieties $\mathbf G$ obtained as direct limits of Grassmannians $G(i_m,V^{n_m})$ for $m\in\mathbb Z_{>0}$ under embeddings of degree greater than $1$. It has been conjectured by Donin and Penkov (2003) that any vector bundle of finite rank on a twisted ind-Grassmannian is trivial. We prove this conjecture. Bibliography: 16 titles.
Keywords: ind-variety, twisted ind-Grassmannian, vector bundle.
@article{SM_2011_202_1_a3,
     author = {I. B. Penkov and A. S. Tikhomirov},
     title = {Triviality of vector bundles on twisted {ind-Grassmannians}},
     journal = {Sbornik. Mathematics},
     pages = {61--99},
     year = {2011},
     volume = {202},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a3/}
}
TY  - JOUR
AU  - I. B. Penkov
AU  - A. S. Tikhomirov
TI  - Triviality of vector bundles on twisted ind-Grassmannians
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 61
EP  - 99
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_1_a3/
LA  - en
ID  - SM_2011_202_1_a3
ER  - 
%0 Journal Article
%A I. B. Penkov
%A A. S. Tikhomirov
%T Triviality of vector bundles on twisted ind-Grassmannians
%J Sbornik. Mathematics
%D 2011
%P 61-99
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2011_202_1_a3/
%G en
%F SM_2011_202_1_a3
I. B. Penkov; A. S. Tikhomirov. Triviality of vector bundles on twisted ind-Grassmannians. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 61-99. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a3/

[1] W. Barth, A. Van de Ven, “On the geometry in codimension 2 of Grassmann manifolds”, Classification of algebraic varieties and compact complex manifolds, Lecture Notes in Math., 412, Springer-Verlag, Berlin, 1974, 1–35 | DOI | MR | Zbl

[2] A. N. Tjurin, “Vector bundles of finite rank over infinite varieties”, Math. USSR-Izv., 10:6 (1976), 1187–1204 | DOI | MR | Zbl | Zbl

[3] E. Sato, “On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties”, J. Math. Kyoto Univ., 17:1 (1977), 127–150 | MR | Zbl

[4] E. Sato, “On infinitely extendable vector bundles on $G/P$”, J. Math. Kyoto Univ., 19:1 (1979), 171–189 | MR | Zbl

[5] J. Donin, I. Penkov, “Finite rank vector bundles on inductive limits of grassmannians”, Int. Math. Res. Not., 34 (2003), 1871–1887 | DOI | MR | Zbl

[6] I. Coandǎ, G. Trautmann, “The splitting criterion of Kempf and the Babylonian tower theorem”, Comm. Algebra, 34:7 (2006), 2485–2488 | DOI | MR | Zbl

[7] I. Penkov, A. S. Tikhomirov, “Rank-2 vector bundles on ind-Grassmannians”, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhäuser, Boston–Basel–Berlin, 2009, 555–572 | MR | Zbl

[8] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 ; R. Hartshorne, Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg–Berlin, 1977 | MR | Zbl | MR | Zbl

[9] A. B. Altman, S. L. Kleiman, “Foundations of the theory of Fano schemes”, Compositio Math., 34:1 (1977), 3–47 | MR | Zbl

[10] R. Braun, S. Müller-Stach, “Effective bounds for Nori's connectivity theorem”, Higher dimensional complex varieties (Trento, Italy, 1994), de Gruyter, Berlin, 1996, 83–88 | MR | Zbl

[11] R. Lazarsfeld, Positivity in algebraic geometry, v. I, Ergeb. Math. Grenzgeb. (3), 48, Classical setting: line bundles and linear series, Springer-Verlag, Berlin, 2004 | MR | Zbl

[12] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 | MR | MR | Zbl

[13] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects Math., 31, Vieweg Sohn, Braunschweig, 1997 | MR | Zbl

[14] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | MR | Zbl

[15] Ch. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progr. Math., 3, Birkhäuser, Boston-Basel-Stuttgart, 1980 | MR | Zbl

[16] S. A. Strømme, “On parametrized rational curves in Grassmann varieties”, Space curves (Rocca di Papa, 1985), Lecture Notes in Math., 1266, Springer-Verlag, 1987, 251–272 | DOI | MR | Zbl