Blow-up of ion acoustic waves in a plasma
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 35-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model equation is considered, which describes ion acoustic waves in a plasma taking account of strong nonlinear dissipation and nonlinear sources of general form. For the corresponding initial-boundary value problems in a bounded 3D-domain with zero Dirichlet condition at the boundary of the domain, necessary conditions for the blow-up of a solution are obtained. An estimate for the life time of the solution is also obtained. Finally, it is proved that for any initial data in $\mathbb H_0^1(\Omega)$ the problem under consideration has a local strong generalized solution (in time), that is, it is shown that a blow-up always takes nonzero time. Bibliography: 16 titles.
Keywords: finite-time blow-up, nonlinear Sobolev equations, nonlinear mixed boundary value problems, waves in a plasma.
@article{SM_2011_202_1_a2,
     author = {M. O. Korpusov},
     title = {Blow-up of ion acoustic waves in a plasma},
     journal = {Sbornik. Mathematics},
     pages = {35--60},
     year = {2011},
     volume = {202},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a2/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Blow-up of ion acoustic waves in a plasma
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 35
EP  - 60
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_1_a2/
LA  - en
ID  - SM_2011_202_1_a2
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Blow-up of ion acoustic waves in a plasma
%J Sbornik. Mathematics
%D 2011
%P 35-60
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2011_202_1_a2/
%G en
%F SM_2011_202_1_a2
M. O. Korpusov. Blow-up of ion acoustic waves in a plasma. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 35-60. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a2/

[1] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 | Zbl

[2] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathscr F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[3] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[4] V. K. Kalantarov, O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types”, J. Soviet Math., 10:1 (1978), 53–70 | DOI | MR | Zbl | Zbl

[5] E. Mitidieri, S. I. Pohozaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362 | MR | Zbl | Zbl

[6] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR | Zbl

[7] V. A. Galaktionov, S. I. Pohozaev, “Third-order nonlinear dispersive equations: Shocks, rarefaction, and blowup waves”, Comput. Math. Math. Phys., 48:10 (2008), 1784–1810 | DOI | MR | Zbl

[8] L. D. Landau, E. M. Lifshitz, Course of theoretical physics, v. 8, Pergamon Internat. Library Sci. Tech. Engrg. Social Stud., Electrodynamics of continuous media, Pergamon Press, Oxford, 1984 | MR | MR | Zbl | Zbl

[9] L. D. Landau, E. M. Lifshitz, Lehrbuch der theoretischen Physik, v. 10, Physikalische Kinetik, H. Deutsch, Frankfurt am Main, 1992 | Zbl

[10] I. E. Tamm, Fundamentals of the theory of electricity, Mir, Moscow, 1979

[11] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Fizmatlit, M., 1998 | Zbl

[12] M. O. Korpusov, Yu. D. Pletner, A. G. Sveshnikov, “Unsteady waves in anisotropic dispersive media”, Comput. Math. Math. Phys., 39:6 (1999), 968–984 | MR | Zbl

[13] A. B. Al'shin, Yu. D. Pletner, A. G. Sveshnikov, “Unique solvability of the Dirichlet problem for the ion-sound wave equation in plasma”, Dokl. Math., 58:1 (1998), 148–150 | MR | Zbl

[14] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford, 1964 | MR | Zbl | Zbl

[15] L. Gasiński, N. S. Papageorgiou, Nonlinear analisys, Ser. Math. Anal. Appl., 9, Chapman Hall, Boca Raton, FL, 2006 | MR

[16] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl