Characterization of the sets of divergence for sequences of operators with the localization property
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 9-33
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			General theorems characterizing the sets of divergence for sequences of operators with the localization property are established and then used to obtain a complete characterization of the sets of divergence for Fourier series and their Cesàro means in classical orthonormal systems.
Bibliography: 28 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
localization property of operators, sets of divergence, $G_{\delta\sigma}$-sets.
                    
                    
                    
                  
                
                
                @article{SM_2011_202_1_a1,
     author = {G. A. Karagulyan},
     title = {Characterization of the sets of divergence for sequences of operators with the localization property},
     journal = {Sbornik. Mathematics},
     pages = {9--33},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a1/}
}
                      
                      
                    TY - JOUR AU - G. A. Karagulyan TI - Characterization of the sets of divergence for sequences of operators with the localization property JO - Sbornik. Mathematics PY - 2011 SP - 9 EP - 33 VL - 202 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2011_202_1_a1/ LA - en ID - SM_2011_202_1_a1 ER -
G. A. Karagulyan. Characterization of the sets of divergence for sequences of operators with the localization property. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 9-33. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a1/
