Characterization of the sets of divergence for sequences of operators with the localization property
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 9-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General theorems characterizing the sets of divergence for sequences of operators with the localization property are established and then used to obtain a complete characterization of the sets of divergence for Fourier series and their Cesàro means in classical orthonormal systems. Bibliography: 28 titles.
Keywords: localization property of operators, sets of divergence, $G_{\delta\sigma}$-sets.
@article{SM_2011_202_1_a1,
     author = {G. A. Karagulyan},
     title = {Characterization of the sets of divergence for sequences of operators with the localization property},
     journal = {Sbornik. Mathematics},
     pages = {9--33},
     year = {2011},
     volume = {202},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a1/}
}
TY  - JOUR
AU  - G. A. Karagulyan
TI  - Characterization of the sets of divergence for sequences of operators with the localization property
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 9
EP  - 33
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_1_a1/
LA  - en
ID  - SM_2011_202_1_a1
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%T Characterization of the sets of divergence for sequences of operators with the localization property
%J Sbornik. Mathematics
%D 2011
%P 9-33
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2011_202_1_a1/
%G en
%F SM_2011_202_1_a1
G. A. Karagulyan. Characterization of the sets of divergence for sequences of operators with the localization property. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 9-33. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a1/

[1] W. Sierpiński, “Sur l'ensemble des points de convergence d'une suite de fonctions continues”, Fund. Math., 2 (1921), 41–49 | Zbl

[2] H. Hahn, “Über die Menge der Konvergenzpunkte einer Funktionenfolge”, Arch. d. Math. u. Phys. (3), 28 (1919), 34–45 | Zbl

[3] A. N. Kolmogoroff, “Une série de Fourier–Lebesgue divergente presque partout”, Fund. Math., 4 (1923), 324–328 | Zbl

[4] K. Zeller, “Über Konvergenzmengen von Fourierreihen”, Arch. Math., 6:4 (1955), 335–340 | DOI | MR | Zbl

[5] L. Carleson, “On convergence and growth of partial sums of Fourier series”, Acta Math., 116:1 (1966), 135–157 | DOI | MR | Zbl

[6] R. A. Hunt, “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues (Proc. Conf., Edwardsville, IL, USA, 1967), Southern Illinois Univ. Press, Carbondale, IL, 1968, 235–256 | MR | Zbl

[7] P. du Bois-Reymond, “Untersuchungen über die Convergenz und Divergenz der Fourier'schen Darstellungsformeln”, Münch. Abh., 12 (1877), 1–102 | Zbl

[8] B. S. Stechkin, “O skhodimosti i raskhodimosti trigonometricheskikh ryadov”, UMN, 6:2 (1951), 148–149 | Zbl

[9] L. V. Taikov, “O raskhodimosti ryadov Fure po perestavlennoi trigonometricheskoi sisteme”, UMN, 18:5 (1963), 191–198 | MR | Zbl

[10] J.-P. Kahane, Y. Katznelson, “Sur les ensembles de divergence des séries trigonométriques”, Studia Math., 26 (1966), 305–306 | MR | Zbl

[11] V. V. Buzdalin, “Unbounded divergence of Fourier series of continuous functions”, Math. Notes, 7:1 (1970), 5–12 | DOI | MR | Zbl | Zbl

[12] S. Yu. Lukashenko, “On the structure of sets of divergence of trigonometric series and series in the Walsh system”, Sov. Math. Dokl., 22 (1980), 112–114 | MR | Zbl

[13] Sh. V. Kheladze, “O raskhodimosti vsyudu ryadov Fure po ogranichennym sistemam Vilenkina”, Tr. Tbilisskogo matem. instituta AN Gruz. SSR, 58 (1978), 224–242 | MR | Zbl

[14] Sh. V. Kheladze, “O raskhodimosti vsyudu ryadov Fure–Uolsha”, Soobsch. AN Gruz. SSR, 80 (1975), 285–288 | Zbl

[15] V. V. Buzdalin, “On divergence of Fourier–Walsh series of bounded functions on sets of measure zero”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 365–372 | DOI | MR | Zbl

[16] U. Goginava, “On the divergence of Walsh–Fejer means of bounded functions on sets of measure zero”, Acta Math. Hungar., 121:4 (2008), 359–369 | DOI | MR | Zbl

[17] M. A. Lunina, “O mnozhestve tochek neogranichennoi raskhodimosti ryadov po sisteme Khaara”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 31{, No 4} (1976), 13–20 | MR | Zbl

[18] V. I. Prokhorenko, “O raskhodyaschikhsya ryadakh po sisteme Khaara”, Izv. vuzov. Matem., 1971, no. 1, 62–68 | MR | Zbl

[19] V. M. Bugadze, “Divergence of Fourier–Haar series of bounded functions on sets of measure zero”, Math. Notes, 51:5 (1992), 437–441 | DOI | MR | Zbl

[20] G. A. Karagulyan, “Polnaya kharakteristika mnozhestv tochek raskhodimosti ryadov Fure–Khaara”, Izv. NAN Armenii, 45:5 (2010), 33–50

[21] G. A. Karagulyan, “Divergence of general operators on sets of measure zero”, Colloq. Math., 121:1 (2010), 113–119 ; arXiv: math/0912.1453v1 | DOI

[22] P. L. Ulyanov, “O raskhodimosti ryadov Fure”, UMN, 12:3 (1957), 75–132 | MR | Zbl

[23] P. L. Ul'yanov, “Kolmogorov and divergent Fourier series”, Russian Math. Surveys, 38:4 (1983), 57–100 | DOI | MR | Zbl

[24] W. R. Wade, “Recent developments in the theory of Walsh series”, Internat. J. Math. Math. Sci., 5:4 (1982), 625–673 | DOI | MR | Zbl

[25] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 ; B. S. Kashin, A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl | MR | Zbl

[26] A. Zygmund, Trigonometric series, v. I, Cambridge Univ. Press, New York, 1959 | MR | MR | Zbl | Zbl

[27] N. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[28] B. Golubov, A. Efimov, V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl