Ideals of generalized matrix rings
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 1-8
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $R$ and $S$ be rings, and $_RM_S$ and $_SN_R$ bimodules. In the paper, in terms of isomorphisms of lattices, relationships between the lattices of one-sided and two-sided ideals of the generalized matrix ring 
$K=\bigl(\begin{smallmatrix}R\\N\end{smallmatrix}\bigr)$ and the corresponding lattices of ideals of the rings $R$ and $S$ are described. Necessary and sufficient conditions for a pair of ideals $I$, $J$ of rings
$R$ and $S$, respectively, to be the main diagonal of some ideal of the ring $K$ are also obtained.
Bibliography: 8 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
generalized matrix ring, lattice of ideals.
                    
                    
                    
                  
                
                
                @article{SM_2011_202_1_a0,
     author = {A. V. Budanov},
     title = {Ideals of generalized matrix rings},
     journal = {Sbornik. Mathematics},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a0/}
}
                      
                      
                    A. V. Budanov. Ideals of generalized matrix rings. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a0/
