Ideals of generalized matrix rings
Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 1-8

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ and $S$ be rings, and $_RM_S$ and $_SN_R$ bimodules. In the paper, in terms of isomorphisms of lattices, relationships between the lattices of one-sided and two-sided ideals of the generalized matrix ring $K=\bigl(\begin{smallmatrix}R\\N\end{smallmatrix}\bigr)$ and the corresponding lattices of ideals of the rings $R$ and $S$ are described. Necessary and sufficient conditions for a pair of ideals $I$, $J$ of rings $R$ and $S$, respectively, to be the main diagonal of some ideal of the ring $K$ are also obtained. Bibliography: 8 titles.
Keywords: generalized matrix ring, lattice of ideals.
@article{SM_2011_202_1_a0,
     author = {A. V. Budanov},
     title = {Ideals of generalized matrix rings},
     journal = {Sbornik. Mathematics},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_1_a0/}
}
TY  - JOUR
AU  - A. V. Budanov
TI  - Ideals of generalized matrix rings
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1
EP  - 8
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_1_a0/
LA  - en
ID  - SM_2011_202_1_a0
ER  - 
%0 Journal Article
%A A. V. Budanov
%T Ideals of generalized matrix rings
%J Sbornik. Mathematics
%D 2011
%P 1-8
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2011_202_1_a0/
%G en
%F SM_2011_202_1_a0
A. V. Budanov. Ideals of generalized matrix rings. Sbornik. Mathematics, Tome 202 (2011) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/SM_2011_202_1_a0/