Expanding the reciprocal of an entire function with zeros in a strip in a Kreǐn series
Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1853-1871 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

If $L(\lambda)$ is an entire function with only simple zeros, all of which lie in some strip, the problem of representing $L^{-1}(\lambda)$ by a partial fraction series is solved. Bibliography: 26 titles.
Keywords: entire function, partial fraction series.
@article{SM_2011_202_12_a5,
     author = {V. B. Sherstyukov},
     title = {Expanding the reciprocal of an entire function with zeros in a~strip in {a~Kreǐn} series},
     journal = {Sbornik. Mathematics},
     pages = {1853--1871},
     year = {2011},
     volume = {202},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2011_202_12_a5/}
}
TY  - JOUR
AU  - V. B. Sherstyukov
TI  - Expanding the reciprocal of an entire function with zeros in a strip in a Kreǐn series
JO  - Sbornik. Mathematics
PY  - 2011
SP  - 1853
EP  - 1871
VL  - 202
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2011_202_12_a5/
LA  - en
ID  - SM_2011_202_12_a5
ER  - 
%0 Journal Article
%A V. B. Sherstyukov
%T Expanding the reciprocal of an entire function with zeros in a strip in a Kreǐn series
%J Sbornik. Mathematics
%D 2011
%P 1853-1871
%V 202
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2011_202_12_a5/
%G en
%F SM_2011_202_12_a5
V. B. Sherstyukov. Expanding the reciprocal of an entire function with zeros in a strip in a Kreǐn series. Sbornik. Mathematics, Tome 202 (2011) no. 12, pp. 1853-1871. http://geodesic.mathdoc.fr/item/SM_2011_202_12_a5/

[1] M. Krein, “On a remarkable class of Hermitian operators”, C. R. (Doklady) Acad. Sci. URSS (N.S.), 44 (1944), 175–179 | MR | Zbl

[2] H. L. Hamburger, “Hermitian transformations of deficiency-index $(1,1)$, Jacobi matrices and undetermined moment problems”, Amer. J. Math., 66:4 (1944), 489–522 | DOI | MR | Zbl

[3] M. G. Krein, “K teorii tselykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. matem., 11:4 (1947), 309–326 | MR | Zbl

[4] B. Ja. Levin, Distribution of zeros of entire functions, Amer. Math. Soc., Providence, RI, 1964 | MR | MR | Zbl | Zbl

[5] V. B. Sherstyukov, “O razlozhenii meromorfnykh funktsii spetsialnogo vida na prosteishie drobi”, Anal. Math., 33:1 (2007), 63–81 | DOI | MR | Zbl

[6] N. I. Akhiezer, “O nekotorykh svoistvakh tselykh transtsendentnykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. matem., 10:5 (1946), 411–428 | MR | Zbl

[7] A. A. Goldberg, I. V. Ostrovskii, Value distribution of meromorphic functions, Transl. Math. Monogr., 236, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl | Zbl

[8] L. de Branges, Hilbert spaces of entire functions, Prentice-Hall, Englewood Cliffs, NJ, 1968 | MR | Zbl

[9] Ju. F. Korobeinik, “Boundary properties of analytic solutions of differential equations of infinite order”, Math. USSR-Sb., 43:3 (1982), 323–345 | DOI | MR | Zbl | Zbl

[10] Yu. F. Korobeinik, O razreshimosti v kompleksnoi oblasti nekotorykh obschikh klassov lineinykh operatornykh uravnenii, Izd-vo RGU, Rostov-na-Donu, 2005

[11] A. Borichev, M. Sodin, “Krein's entire functions and the Bernstein approximation problem”, Illinois J. Math., 45:1 (2001), 167–185 | MR | Zbl

[12] L. S. Maergoiz, “Indicator diagram and generalized Borel–Laplace transforms for entire functions of a given proximate order”, St. Petersburg Math. J., 12:2 (2001), 191–232 | MR | Zbl

[13] L. S. Maergoiz, “On partial fraction expansion for meromorphic functions”, Mat. Fiz. Anal. Geom., 9:3 (2002), 487–492 | MR | Zbl

[14] I. V. Ostrovskii, “Ob odnom klasse tselykh funktsii”, Dokl. AN SSSR, 229:1 (1976), 39–41

[15] L. de Branges, “The Bernstein problem”, Proc. Amer. Math. Soc., 10:5 (1959), 825–832 | DOI | MR | Zbl

[16] P. Koosis, The logarithmic integral, v. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[17] Ch. Berg, H. L. Pedersen, “Nevanlinna matrices of entire functions”, Math. Nachr., 171:1 (1995), 29–52 | DOI | MR | Zbl

[18] V. B. Sherstyukov, “Representation of the reciprocal of an entire function by series of partial fractions and exponential approximation”, Sb. Math., 200:3 (2009), 455–469 | DOI | MR | Zbl

[19] A. G. Bakan, “Polynomial approximation in $L_{p}(\mathbb R, d\mu)$. I. General results and representation theorem”, Nats. Akad. Nauk Ukrain. Inst. Mat. Preprint, 7 (1998), 1–45 | MR | Zbl

[20] A. G. Bakan, “Polynomial density in $L_{p}(\mathbb R, d\mu)$ and representation of all measures which generate a determinate Hamburger moment problem”, Approximation, optimization and mathematical economics (Guadeloupe, 1999), Physica, Heidelberg, 2001, 37–46 | MR | Zbl

[21] A. G. Bakan, “Polynomial form of de branges conditions for the denseness of algebraic polynomials in the space $C^{0}_{w}$”, Proc. Steklov Inst. Math., 57:3 (2005), 364–381 | DOI | MR | Zbl

[22] A. G. Bakan, “Razlozhenie obratnoi velichiny tseloi funktsii na prostye drobi”, Dokl. NAN Ukrainy, 2009, no. 2, 11–13 | MR | Zbl

[23] A. M. Sedletskii, Klassy analiticheskikh preobrazovanii Fure i eksponentsialnye approksimatsii, Fizmatlit, M., 2005

[24] I. F. Krasichkov-Ternovskii, “A geometric lemma useful in the theory of entire functions and Levinson-type theorems”, Math. Notes, 24:4 (1978), 784–792 | DOI | MR | Zbl | Zbl

[25] R. M. Redheffer, “Completeness of sets of complex exponentials”, Advances in Math., 24:1 (1977), 1–62 | DOI | MR | Zbl

[26] A. M. Sedletskii, “Annihilable systems of trigonometric systems”, Math. Notes, 34:2 (1983), 601–608 | DOI | MR | Zbl